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Abstract

We explore the representations of the underlying infinite dimensional symmetry
algebra in two dimensional quantum field theory. This provides a window to study
the algebra of local fields which is central to the description of two dimensional
critical phenomena that emerges in the scaling limit of certain statistical systems
on a two-dimensional lattice. Unitary minimal models are then constructed from
such representations and the first few series of the set of minimal theories are shown
to correspond to some well-known statistical systems. The systems studied in par-
ticular are the Ising and the tricritical Ising models. Potential interactions between
Ising fermions and bosons in two dimensions occurring within the framework of
specific condensed matter models at criticality are reviewed using arguments from
conformal invariance.
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1 Introduction

Two dimensional conformal field theory (CFT) is a quantum field theory endowed with
conformal symmetry. Conformal invariance arising at critical fixed points was first put
forward by Polyakov in 1970 [21]. The understanding of conformal field theories has
proven to be a relatively arduous exercise in many areas of theoretical physics. It was not
until more than a decade later that the field would received serious consideration through
the seminal work of Belavin, Polyakov and Zamolodchikov on conformal field theory in
two dimensions and its applications in statistical physics [2]. Since then conformal field
theory unfolded very rapidly in many new direction and was found to provide an accurate
description of critical phenomena. Aside to their vital role in understanding the classifi-
cation of fixed points of the renormalization group (RG) and providing explanations for
the occurrence of scale-invariant theories [2, 6, 7], CFTs proved prominently crucial in
the development of string theory, for example, conformal invariance of the world sheet
is necessary for hindering the appearance of ghosts degrees of freedom which lead to
non-positive definition of probabilities in the quantum theory. Furthermore CFTs are
central for studying quantum gravity via the AdS/CFT correspondence [1, 38]. Since its
establishment conformal field theory has been receiving extensive inputs from pure math-
ematics. An important one being the Kac formula [1, 2, 3, 4, 6, 8] which was explicitly
proven in Ref. [30] and is extensively employed in the study of minimal models which we
shall encounter later on.

When a system tends towards criticality the physical description is outlined by its
correlation length which is much greater than all microscopic scales. Being independent
of microscopic scales allows many systems to look similar at criticality. This is known as
the principle of universality [1]. The critical exponents associated to all universal quan-
tities are related to the correlation length. The latter diverges at criticality indicating
that the system is loosing its only scale and acquires scale symmetry defined globally. If
interactions are local then the system bears local scale symmetry and angle preserving
- length altering transformations emerge which are the conformal transformations. In
this thesis, we shall essentially work with systems which act primarily via local inter-
actions. In such cases, as described by the authors of Ref. [1, 6] for homogeneous and
isotropic systems, conformal symmetry is bound to follow from scale invariance such that
the classification of the renormalization group fixed points1 is similar to the construction
of CFTs. A concrete demonstration of this can be found in Zamolodchikov’ s paper [7].
Generally speaking, conformal transformations are simply dilations by a scaling factor
which is dependent on positions (non-rigid or local dilations).

Even after enhancement by conformal invariance, we still have a finite number of
parameters required to specify a conformal transformation in an arbitrary number of di-
mensions d which is 1

2(d + 1)(d + 2). The result of this limited number of parameters
restrict the amount of information that can be obtained from correlation functions. This
restriction is however lifted when the number of dimensions is two, due to the infinite
collection of well-defined non-rigid (local) transformations which are essentially local dila-
tions. The number of parameters specifying local conformal transformations is therefore
infinite which explains why conformal invariance in two dimensions is so successful. The
details of this argument are presented in subsection (2.2). This allows us to construct
correlations functions and derive valuable information (such as the critical exponents) as

1A fixed point in a field theory is one which has the symmetry x

µ ! ↵x

µ in all scales, where x

µ are
coordinates of space and ↵ is just a scaling parameter [6].

1



we shall see.

Outline of thesis

In Chapter 2, the general features of conformal field theory in an arbitrary number
of dimensions are introduced before considering cases where the number of dimensions is
reduced to two. From the operator product expansion formalism we introduce the central
charge and show how the c-value characterizes models at criticality. We focus specifically
the massless free fermion case which has the c-value of the Ising model [8]. The explicit
derivation of the c-theorem is provided and shown to be accurate only up to a pertur-
bation using RG flow methods [7] in the final section of this chapter. In chapter 3, we
study the structure of conformal field theory from the point of view of radial quantization
which provides an e�cient way of ordering operators later in the chapter. The central
extension to the Witt algebraW, the Virasoro algebraV, is explicitly derived. We discuss
the further constraints (aside to those imposed by conformal symmetry) imposed by the
operator algebra on the three- and four-point correlation functions. The representations
of the Virasoro algebra are introduced and discussed in chapter 4 as we want to provide
a physical meaning to the underlying symmetries present in our theories. This allows to
then construct the minimal models. In chapter 5, the Landau-Ginzburg theory is intro-
duced which provides a di↵erent framework based on an e↵ective Lagrangian approach
[1] for studying minimal models. In the final chapter, we discuss an application of the
minimal theory M(5, 4) which lies in the universality class of the tricritical Ising model
to the phenomenon of emerging spacetime supersymmetry motivated by the recent nu-
merical analysis [28] in d = 1 + 1. A plan for future work is then later suggested as part
of the final remarks.

2 Aspects of conformal field theory

Conformal transformations, also known as conformal mappings, represent the set of gen-
eral coordinate transformations xµ ! x0µ which are invertible mappings and orientation
preserving2 [1]. From a very general point of view, one can ask what does a conformal
mapping actually means? Considering for example an analytic function; the latter is con-
formal at any point where it has a non-vanishing derivative. On the contrary, any confor-
mal mapping of a complex variable which has a continuous partial derivative is analytic.
These conformal transformations in d dimensions can be described by the noncompact
group3 SO(d + 1, 1). The symmetries associated to this group and further techniques
necessary for understanding two dimensional conformal field theories are introduced in
this chapter.

2.1 Algebra of conformal symmetry

From the definition of conformal transformation above, the line element is written down
up to scale:

g
µ⌫

(x) ! g0
µ⌫

(x0) = ⇤(x)g
µ⌫

(x), (1)

where ⇤(x) is the conformal factor and represents some function of x. It can be noted
how locally a conformal transformation accounts for rotation and dilation such that it

2On a more formal note, one can also say that a conformal mapping represents a bijective homomor-
phism [18] (Def. 1.2).

3Let’ s consider an element A where A 2 RN is compact () A is closed and bounded (which means
it can be fitted inside a sphere surrounding the origin). Noncompactness can be therefore (informally)
referred to as not fitting into the aforementioned sphere [18].
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evidently forms a group. The special case when ⇤(x) = 1 corresponds to the subset which
is the Poincaré group [1]. We now consider an infinitesimal transformation of the form
xµ ! x0µ = xµ + ✏µ(x), where ✏(x) is a small parameter (i.e: terms proportional to O(✏2)
or higher are disregarded). The metric g

µ⌫

is found to take the following form

g
µ⌫

! g0
µ⌫

= g
µ⌫

� @
µ

✏
⌫

� @
⌫

✏
µ

. (2)

The derivation of the above equation is not as trivial as one might think, hence we
explicitly work out the details by first considering a Taylor expansion of g0

µ⌫

(x0) which is

g0
µ⌫

(x0) = g0
µ⌫

(x) + @
�

(g0
µ⌫

)✏� +O(✏�) + ... . (3)

A covariant transformation of g0
µ⌫

(x0) is

g0
µ⌫

(x0) =
@x↵

@x0µ
@x�

@x0⌫ g↵�(x) = (�↵
µ

� @
µ

✏↵)(��
⌫

� @
⌫

✏�) g
↵�

= g
µ⌫

� �↵
µ

(@
⌫

✏�)g
↵�

� ��
⌫

(@
µ

✏↵)g
↵�

+O(✏).

The dummy indices on ✏(x) can be replaced by � and the g
↵�

can be contracted by the
�↵
µ

and ��
⌫

such that

g0
µ⌫

(x0) = g
µ⌫

(x)� (@
⌫

✏�)g
µ�

� (@
µ

✏�)g
�⌫

+ ... . (4)

We can now equate (1) and (2), using the product rule @
µ

(✏�g
µ�

) = (@
µ

✏�)g
µ�

+(@
µ

g
µ�

)✏�

in eq. (2) and symmetrizing over the indices µ and ⌫, one obtains the following

g0
µ⌫

(x0) = g
µ⌫

�@
µ

✏
⌫

+
1

2
[@

µ

g
�⌫

+@
⌫

g
µ�

�@
�

g
µ⌫

]✏��@
⌫

✏
µ

+
1

2
[@

⌫

g
�µ

+@
µ

g
⌫�

�@
�

g
⌫µ

]✏�, (5)

where the quantities in the square brackets can be recognized as being the Christofel
symbols such that one can rewrite4 eq. (5) as

g0
µ⌫

(x0) = g
µ⌫

(x)�r
µ

✏
⌫

�r
⌫

✏
µ

, (6)

where r
µ

✏
⌫

= @
µ

✏
⌫

� �
µ⌫�

✏� and similarly when µ $ ⌫. However since we are working
on flat space, the Christofel symbols vanish and we are left with eq. (2) which completes
the proof.

Under the infinitesimal transformation x0µ = xµ+ ✏µ(x) we can express the conformal
factor as ⇤(x) = 1 + f(x), such that for a conformal mapping we demand that

@
µ

✏
⌫

+ @
⌫

✏
µ

= f(x)g
µ⌫

, (7)

where f(x) is determined by contracting both sides eq. (7) with gµ⌫ such that

f(x) =
2

d
@
⇢

✏⇢, (8)

where d = gµ⌫g
µ⌫

corresponds to the dimensions of the manifold. Substituting eq. (8) in
(7), one obtains the conformal Killing equations [18]. In order to understand the confor-
mal transformation in d dimensions, we need to solve eq. (7), the details can be found in

4The primes on gµ⌫ in eq. (5) does not appear when equating (1) and (2), this is because the di↵erence
between the derivatives of the primed and unprimed gµ⌫ is only of order O(✏).
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Ref. [1]. This leads to the following explicit relation for conformal transformations in an
arbitrary number of dimensions

(d� 1)@2f = 0. (9)

From the above equation we can look at di↵erent cases corresponding to di↵erent values of
d. For example d = 1 is trivial since there are no restrictions on f such that any smooth
transformation in one dimension is conformal. In two dimensions, eq. (7) represents
the Cauchy-Riemann equations for di↵erent values of µ and ⌫ with solutions given as
holomorphic (or antiholomorphic) functions generating conformal transformations. This
will be further discussed later on as it is the most interesting for studying systems in
statistical physics. Finally when d � 3, the general solution to (7) can be expressed as

✏
µ

(x) = a
µ

+ b
µ⌫

x⌫ + �xµ � bµx2 + 2(b · x)xµ, (10)

where b
µ⌫

= �b
⌫µ

is antisymmetric and where a
µ

, b
µ⌫

,� and bµ which corresponds to
translations, rotations, scale transformations and special conformal transformations re-
spectively. � is an arbitrary scalar. When d = 4, one can note that the total number of
parameters for the above set of transformations is 15. This is easily obtain by counting
the number of degrees of freedom5 associated to a

µ

, b
µ⌫

,� and bµ which are 4, 6, 1, 4
respectively. A complete derivation of eq. (10) can be found in Ref. [1] (Pg. 96-97).

So far we have been looking infinitesimal conformal transformation generated by eq.
(7). Those transformations can also be defined for every points on the manifold Rn lead-
ing to global conformal transformations [1]. The expressions for the finite transformations
generating translations, rotations and scale transformations are written in a form which
is familiar to the first three terms in eq. (10). The last transformations, the special
conformal transformations, however are expressed di↵erently. This can shown by the
following construction which is the composition of the global conformal mapping of in-
version xµ ! xµ/x2, followed by a translation (infinitesimal) bµ and followed by a further
inversion [17]

xµ ! xµ

x2
� bµ !

x

µ

x

2 � bµ

(x
µ

x

2 � bµ)2
=

xµ � bµx2

1� 2b · x+ b2x2

����
b

µ!0

= xµ � bµx2 + 2(b · x)xµ, (11)

where the far right hand side corresponds to the infinitesimal special conformal transfor-
mations (which matches with the last two terms of eq. (10) when we take bµ ! 0 and
Taylor expand). The above global transformations form the conformal group where the
generators for translations, Lorentz rotations, scale transformations and special conformal
transformations are P

µ

, L
µ⌫

, D and K
µ

respectively. This forms the 15-parameter group
which is an extension of the 10-parameter Poincaré group. The conformal algebra for the
15-parameter group therefore closes as shown by the following commutation relations [1]

[L
µ⌫

, L
⇢�

] = i(⌘
⌫⇢

L
µ⇢

+ ⌘
⌫�

L
⌫⇢

� ⌘
µ⇢

L
⌫�

� ⌘
⌫�

L
µ⇢

)

[P
⇢

, L
µ⌫

] = i(⌘
⇢µ

P
⌫

� ⌘
⇢⌫

P
µ

)

[P
µ

, P
⌫

] = 0

[Kµ, P
⌫

] = 2i(⌘
µ⌫

D � L
µ⌫

)

5The number of degrees of freedom is obtain by counting the number of components which are: 4
for each of the vectors aµ and bµ, 1 for the scalar � and (16 � 10) = 6 for the antisymmetric tensor

bµ⌫ , where 10 = number of symmetric components. Or explicitly, one can write down (d+1)(d+2)
2 for the

number of parameters.
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[K
⇢

, L
µ⌫

] = i(⌘
⇢µ

K
⌫

� ⌘
⇢⌫

K
µ

) (12)

[D,K
µ

] = �iKµ

[D,P
µ

] = iP
µ

[D,D] = [L
µ⌫

, D] = 0

[K
µ

, K
⌫

] = 0,

where the first three commutations relations corresponds to the algebra of the Poincaré
group while the subsequent algebras correspond to the extension of this bosonic spacetime
symmetry. The whole set of commutation relation corresponds to algebra of the conformal
group in d � 3.

2.2 Conformal invariance in two dimensions

The group of conformal symmetry, as discussed in the previous section is finite in d � 3
but this is not the case in two dimensions as we shall see. A much larger class of solutions
is obtained from only two di↵erential conditions on two functions when d = 2 provided
✏µ(x) is conformal. If (µ, ⌫) = (1, 2) eq. (7) becomes the Cauchy-Riemann equation for
the holomorphic functions [3]

@1✏1 = @2✏2, @1✏2 = �@2✏1. (13)

The antiholomorphic counterparts are defined by simply alternating the signs in eq. (13).
It can therefore be more convenient to have the domain to be the entire complex plane
C. The solutions for eq. (13) are thus naturally expressed as

z = x1 + ix2, z̄ = x1 � ix2, (14)

where z, z̄ 2 C such that we can define w(z, z̄) = ✏1(x1, x2) + i✏2(x1, x2) and w̄(z, z̄) =
✏1(x1, x2)�i✏2(x1, x2) which corresponds to the holomorphic and antiholomorphic Cauchy-
Riemann equations respectively expressed as

@
z̄

w(z, z̄) = 0, @
z

w̄(z, z̄) = 0. (15)

Hence the coordinates in eq. (14) shall be treated as two independent complex variables
instead of complex conjugates [2].

The solutions of eq. (15) generally represent a collection of holomorphic and anti-
holomorphic mappings as discussed above and we know that any analytic mapping of
the complex plane onto itself is orientation preserving, that is conformal. The conformal
group in two dimensions, G is the group of all analytic maps endowed with group mul-
tiplication representing composition of maps such that G = � ⌦ �̄ defined on C2, where
� represents the set of all the holomorphic coordinates z while �̄ accounts for all the
antiholomorphic counterparts. Infinitesimal conformal transformations of the group �
are given by the Laurent series which consist of an infinite number of coe�cients required
for specification of all functions analytic in some neighborhood. It is exactly this infinite
number6 of degrees of freedom that is responsible for the huge amount of information
prevailing within the framework of conformally invariant quantum field theories in two

6In this language, we are saying that the set of conformal (anti)holomorphic maps of the complex
plane is infinite dimensional however one can reiterate the latter in a more precise statement which is that
we have an infinite dimensional Lie algebra which is closely related to the algebra of conformal symmetry
in two dimensions; the Witt algebra, or its central extension of the latter, the Virasoro algebra [18].
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dimensions.

So far we have simply been considering local conformal transformations, which means
that no constraints were imposed demanding that the transformations are well-defined
at every points and be invertible on the Riemann sphere defined as S2 := C [ 1 [3].
The only set of transformations satisfying these constraints are the global conformal
transformations represented by the special conformal group identified by the following
mapping

f(z) =
az + b

cz + d
, with

✓
a b
c d

◆
2 SL(2,C), (16)

where SL(2,C) refers to the special linear group satisfying the constraint ad � bc = 1
which actually identifies the f(z) as the Mobius group7 after modding out the discrete
group Z2. The map f(z) should be free of any essential singularity such that the only
singularities that are assumed are poles, which means f can be written as a function of
polynomials where the denominator and numerator have di↵erent zeros (further details
can be found in [1] eq. (5.14)). The only possibilities for f to be invertible is for both the
denominator and the numerator to be linear functions. We consider some transformations
of f to try and justify eq. (16) such as translations and rotations where f(z) = z + a
and f(z) = bz, |b| = 1 respectively with a, b being constants. If we now lift the restriction
that |b| = 1 and have instead b 2 R, then f(z) = bz shall correspond to a dilation
[22]. Formally translations, rotations and dilations are all conformal transformations (i.e;
angle preserving transformations). Another conformal transformation is the inversion,
f(z) = 1

z

that we briefly talked about in the previous subsection. It does not seem very
convincing that an inversion is a symmetry due to the singularity at z = 0. This has
actually been taken care of when we defined our space to be the complex plane C and a
point at z = 1. Hence upon combining all these transformations, one can see how they
form the group of global conformal transformations given in eq. (16).

2.2.1 Generators of the classical conformal algebra

In many instances when describing physical systems it is useful to invoke local properties
rather than global properties. This allows one to find the algebra of the generators by
considering an infinitesimal Laurent expansion (of the group � we introduced above) in
the neighborhood of z = 0. We note that the properties for holomorphic sector are similar
to those of the antiholomorphic sector, hence we shall deal solely with the former. The
infinitesimal transformations are

z = z + ✏(z) where ✏(z) =
X
n2Z

b
n

zn+1. (17)

We consider this infinitesimal mapping on a spinless and dimensionless field on C hence
the latter transform as [1]

�0(z0, z̄0) = �(z0, z̄0)� ✏(z0)@0�(z0, z̄0)� ✏̄(z̄0)@̄0�(z0, z̄0), (18)

where we Taylor expanded the field in the vicinity of z = 0. It is convenient to express
eq. (18) as

�� = �0(z0, z̄0)� �(z0, z̄0) = �✏(z0)@0�(z0, z̄0)� ✏̄(z̄0)@̄0�(z0, z̄0), (19)

7The Mobius group is isomorphic to the group PSL (2, C) := SL (2, C)/Z2. The mappings f are thus
known as projective mappings [1].
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where the left hand side of eq. (19) can be expressed asX
n2Z

[b
n

l
n

�(z, z̄) + b̄
n

l̄
n

�(z, z̄)], (20)

where b
n

and b̄
n

are just the coe�cients of in the Laurent series expansion and where we
define the generators8 as

l
n

:= �zn+1@
z

and l̄
n

:= �z̄n+1@
z̄

. (21)

The above relations can be used to construct the conformal algebra which closes according
to the following commutation relations as shown

[l
n

, l
m

] = (n�m)l
m+n

[l̄
n

, l̄
m

] = (n�m)l̄
m+n

(22)

[l
n

, l̄
m

] = 0.

The algebra in eq. (22) is commonly known in CFT literatures as the Witt algebra which
we shall denote as W (and W̄ for the antiholomorphic sector, i.e: the second line of (22)).
The conformal algebra is therefore represented as the direct sum of holomorphic and
antiholomorphic component W � W̄. The latter is infinite however for distinct values
of n = {�1, 0, 1}, we can form a subalgebra of SL(2,C) which is finite such that it
consists of the projective conformal transformations (16). Such algebra can be written
as sl(2,R)� sl(2,R). From the definition (21) and for the designated values of n we have
the following generators {l�1, l0, l1} = {�@

z

,�z@
z

,�z2@
z

} respectively corresponding to
translations, dilations and special conformal transformations on the complex plane. The
linear combinations l0 + l̄0 and i(l0 � l̄0) respectively generates dilations and rotations
on the real surface. If we denote the eigenvalues of the two operators l0 and l̄0 as h and
h̄ respectively then we can define the scaling dimension � and spin s of the state as
� = h+ h̄ and s = h� h̄ respectively [3], where both h and h̄ are real.

2.2.2 Correlation functions

The mathematical details presented in the previous subsection will be used to discuss cor-
relation functions which represent the physically measurable quantities in field theories.
It will be demonstrated in the next section how the correlators constructed exclusively
from primary fields satisfy the conformal Ward identities. We now proceed to derive the
correlators from the constraints imposed by conformal invariance [1, 3] such that under
the transformation z ! g(z) and z̄ ! ḡ(z̄), a quasi-primary field transforms as

�0(g, ḡ) =

✓
dg

dz

◆�h

✓
dḡ

dz̄

◆�h̄

�(z, z̄), (23)

which essentially represents a generalization of field transformations under a change of
coordinate; �(x) ! �0(x0) = |@x0/@x|��d �(x), where � is the scaling dimension of �(x)
as we saw earlier and d represents the number of dimensions [3]. The conformal weight of
� expressed as (h, h̄) are real-valued quantities. Under a small perturbation close to the
identity, that is g = z+✏(z) and ḡ = z̄+ ✏̄(z̄), an infinitesimal change in the quasi-primary
field reads

�
✏,✏̄

= �(h�@
z

✏+ ✏@
z

�)� (h̄�@
z̄

✏̄+ ✏̄@
z̄

�). (24)

8We can say that the Lie algebra of the group � we introduced earlier coincides with the algebra of
di↵erential operators.
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This is easily derived by substituting the perturbed fields g(z) and ḡ(z̄) in (23) and Taylor
expanding leads to (24). Any field transforming under (24) is known as a primary field
[1]. The di↵erence between a quasi-primary and a primary is that the former transforms
under an element of SL(2,C) which is strictly part of conformal transformations. This
restriction is lifted upon dealing solely with primary fields. A field which does not fall
in the category of primary fields is known as a secondary field and generally applies to
derivatives of a primary fields.

The correlation function for n primary fields �
i

in two dimensions then follows from
(23), where the conformal transformations are expressed as

h�1(g1, ḡ1)...�n

(g
n

, ḡ
n

)i =
nY

i=1

✓
dg

dz

◆�hi

w=w1

✓
dḡ

dz̄

◆�h̄i

w̄i=w̄i

h�1(z1, z̄1)...�n

(z
n

, z̄
n

)i . (25)

Under the constraints imposed by global conformal invariance, this relation above allows
us to fix the two- and three-point correlation functions. This procedure is demonstrated
in Ref. [3] (Ch. 2). We can write the two and three point functions respectively as

h�1(z1, z̄1)�2(z2, z̄2)i =
C12

z2h12 z̄
2h̄
12

, (26)

where z12 = (z1 � z2) and z̄12 = (z̄1 � z̄2). C12 is just a constant to be determined
by normalizing the fields. The above is therefore valid for the holomorphic conformal
dimension h1 = h2 = h and similar for the antiholomorphic dimension. The two-point
function vanishes if the conformal dimensions are di↵erent. Similarly the three-point
function takes the following form

h�1(z1, z̄1)�2(z2, z̄2)�3(z3, z̄3)i =
C123

zh1+h2�h3
12 zh2+h3�h1

23 zh3+h1�h2
13

⇥
✓
antiholomorphic

sector

◆
.

(27)
Eq. (26) and (27) will be central in understanding the operator product expansions
in section (2.2.4) as the latter will bring us to consider the operator algebra formalism
which imposes extra constraints beyond that of global conformal invariance on the two-
and three-point functions. These ingredients are fundamental for understanding the con-
formal bootstrap [1, 2, 6] introduced by Polyakov [21] and independently by Kadano↵
[13, 14] in order to appreciate the implications of CFTs in statistical physics systems.
Extending the above approach to the four-point function turns out to be a non-trivial
task and requires some additional information.

In deriving eq. (26) and (27) in an arbitrary number of dimensions d as demonstrated
in Ref. [1] (Ch. 4), functions which are left unchanged under all known conformal
transformations are introduced. These are referred to as conformal invariants. The latter
are constructed by invoking the simplest form of conformally invariant cross-ratios (or
anharmonic ratios) [1, 3, 23] which read

r12r34
r13r24

and
r12r34
r23r34

, (28)

where r
ij

= |x
i

� x
j

|. Hence this implies that we can explicitly calculate correlation
functions, however complications rapidly creep up when we extend the above procedure
to the four-point function. In d dimensions, global conformal invariance is not enough and
the four-point (and n-point) functions show dependence on the cross-ratios (28) [1, 23].
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This makes it di�cult to explicitly write something that is in a similar form to eq. (26) or
(27) for a four-point correlation function. We can argue that the four-point function can
be expressed as a product of some simple linear functions and the cross-ratios invariant
under conformal symmetry when the number of dimension is two. This is because of the
large reduction of the number of independent cross-ratios [1]. This reduction is however
not as large as for the three-point function which is completely fixed as we’ ve seen but
it is nonetheless su�cient for the moment. As the four points are constrained on the
same plane, we can therefore write down explicitly the additional linear relations which
represent the six possible cross-ratios. we shall quote the latter from Ref. [1] to be

x =
z12z13
z13z24

, 1� x =
z14z23
z13z24

,
x

1� x
=

z12z34
z14z23

, (29)

plus the inverses. Generally the four-point correlation function can be expressed as

h�1(z1, z̄1)�2(z2, z̄2)�3(z3, z̄3)�4(z4, z̄4)i = f(x, x̄)
4Y

i<j

z
h/3�hi�hj

ij

z̄
h̄/3�h̄i�h̄j

ij

, (30)

where f(x, x̄) represents some form of the linear functions as we discussed previously and
h =

P4
i=1 hi

and h̄ =
P4

i=1 h̄i

. Out of the four points one can fix three of these points, say
z1, z2, z3 for example, via global conformal invariants such that z1 = 0, z2 = 1, z3 7! 1.
The last point x4 will depend on the anharmonic ratios such that we can send x4 = x
which fixes the general expression9 for the four-point correlation function.

2.2.3 The conformal Ward Identity

In this subsection the conformal Ward identities are introduced. Ward identities are
generally objects satisfied by correlation functions as a consequences of an underlying
symmetry of a theory and are obtained by understanding the behavior of n-point cor-
relation functions under a conformal transformation [3]. However before examining the
consequences of conformal symmetry for the n-point functions on the complex plane C,
it is important to consider transformations which are locally conformal. This forces us to
consider briefly the following action defined in terms stress-energy tensor T

µ⌫

subjected
to an infinitesimal transformation which we write as

�S =

Z
ddxT

µ⌫

�µ,⌫ , (31)

where �µ,⌫ represents a general infinitesimal transformation and T
µ⌫

is conserved and
symmetric as implied by invariance of S under translations and rotations (Lorentz) [19].
Furthermore if S is invariant under scale symmetry then T

µ⌫

can be made traceless. From
eq. (7), we understand that under infinitesimal conformal symmetry T

µ⌫

is traceless which
is indicative of invariance under conformal symmetry. The reverse is untrue due to the
fact that �µ,⌫ is not arbitrary (and it has to be as it is precisely the di↵erent forms the
latter can have that will allow us to derive the conformal Ward identity). Hence we
see that the full conformal invariance is a consequence of scale and rotational invariance
[1, 3, 19].

9The full four-point correlation function and a more general form of f(z, z̄) for n-point functions
can be obtained via di↵erential equations where the monodromy conditions are imposed. Monodromy
invariance allows constraints to be imposed such that the physical correlators are single-valued [1] (Ch.
8, 9).

9



We now proceed to the conformal Ward identity by first considering the correlation
function h�1(z1, z̄1)�2(z2, z̄2)...i defined on C. An infinitesimal transformation z ! z0 =
z + �(z) on the points {z

i

} is made inside a region M where M ⇢ C (i.e: a region lying
inside the complex plane [19]) by defining a contour C which contains all the points {z

i

}
and C is found inside region M. This allows the transformation to be conformal within
C leading to infinitesimal discontinuities within C. Hence eq. (31) can be rewritten10 in
terms of complex coordinates as

�S =
1

2⇡i

Z
C

{dz�(z)T (z)� dz̄�(z̄)T (z̄)} (32)

. Taking in order to account for extra terms coming from path integral definition of S [1]
(Pg. 104, Sec. 4.3), we can express the explicit change in the correlation function under
local conformal transformation as

� h�1(z1, z̄1)�2(z2, z̄2)...i =
1

2⇡i

Z
C

dz�(z) hT (z)�1(z1, z̄1)�2(z2, z̄2)...i+ c.c, (33)

where c.c stands for complex conjugate. When �(z) = �(z � z1), corresponding to a
combined rotation and scale dilation, the variation in �1 is given as ��1 = (h1�+ h̄1�̄)�1.
Substituting all this information in (33) and comparing coe�cients of � and �̄ lead to

1

2⇡i

Z
C

dz(z � z1) hT (z)�1(z1, z̄1)�2(z2, z̄2)...i = h1 h�1(z1, z̄1)�2(z2, z̄2)...i+ ... . (34)

If �(z) is now a constant then ��
i

/ @
zi
�
i

up to first order in � such that

1

2⇡i

Z
C

dz hT (z)�1(z1, z̄1)�2(z2, z̄2)...i =
X
i

h
i

@
zi
�
i

h�1(z1, z̄1)�2(z2, z̄2)...i . (35)

From Cauchy’ s theorem, we can then combine (34) and (35) in order to determine
the correlation function of the fields �

i

with T (z) over discrete regions (the contours
we established earlier [3]) specified by the singularities (i.e: we ignore the part of the
series where the function is regular at z = z

i

). The conformal Ward identity is therefore
expressed as

hT (z)�1(z1, z̄1)�2(z2, z̄2)...i =
X
i


h
i

(z � z
i

)2
+

1

z � z
i

@
zi

�
h�1(z1, z̄1)�2(z2, z̄2)...i . (36)

where h
i

represent the dimensions of the primary fields �
i

. The primary fields together
with secondary fields associated to them (which are the descendants as we shall see later
on) form a closed operator algebra. The whole set of fields {�

i

} constitute a confor-
mal family [1, 2, 3] which can be represented as {�

i

} =
L

n

[�
n

]. This will be crucial
when deriving the minimal models later. An equivalent definition of (32) prevails for the
antiholomorphic sector as well.

10Obtaining eq. (32) from eq. (31) require a few steps which we are going to briefly discuss. We shall
consider a vector Fµ where the divergence of Fµ is integrated within M which we defined to be within
the complex plane C bounded by the contour C = @M. From Gauss theorem, one has

R
M d

2
x @µF

µ =R
@M dnµF

µ, where dnµ represents the small line element of C with the normal of dnµ pointing outwards
orthogonal to C. Setting dnµ = "µ⇢ds

⇢ such that ds

⇢ is parallel to C. It is easier to work with an
integration running anti-parallel to C rather than one which perpendicular to it. Hence we now have a
usual contour integral such that

R
M d

2
x @µF

µ =
R
@M{dz "z̄zF z̄+dz̄ "zz̄F

z} = (1/2i)
R
@M{dz F z̄�dz̄ F

z}
which is the form in which eq. (32) is presented. "µ⌫ is the 2 by 2 matrix in Eq. (5.8) Pg. 113 [1] which
we used above.
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2.2.4 The operator product expansion and the central charge

The operator product expansion (OPE) states that the product of the two fields defined
locally within close proximity of each other can be represented by a sum of local operators
up to arbitrary accuracy. The terms present in the OPE are essentially singular as
reflected in our derivation of the conformal Ward identity in (36). Hence the OPE of the
stress-energy tensor with a single primary field �(z, z̄)

T (z)�(z1, z̄1) ⇠


h1

(z � z1)2
+

1

z � z1
@
z1

�
�1(z1, z̄1), (37)

where the symbol ⇠ indicates equal up to non-singular terms [1]. In a classical theory
invariant under conformal symmetry the transformation of the stress-energy tensor under
an infinitesimal change, z = z + � reads

�
�

T = 2T (@�) + �(@T ), (38)

where the holomorphic conformal dimension, h = 2 for the stress-energy tensor. A similar
expression exists for the antiholomorphic sector. The above equation relation is easily
derived by substituting eq. (36) in eq. (33) and computing the variation of a single pri-
mary field �1 for example, one therefore has �

�

�1 = �1(@�) + �(@�1) which is consistent
with eq, (19) where h1 = 1 for a primary field11.

Under scale transformations and translations, we have for the holomorphic primary
field T (z) that hT (z)i = 0, similarly for antiholomorphic sector (i.e: hT (z̄)i = 0) in the
quantum theory. The stress-energy tensor T (z) is a symmetric and traceless represen-
tation of an energy density with scaling dimensions � = 2 and spin s = 2 such that
h = 1

2(� + s) = 2. Hence the global conformal transformation z1 ! z2 = 1/z1 implies
that T (z1) should transform as T (z2) = (dz2/dz1)�2T (z1) = z4T (z1). Therefore since we
know T (0) is finite (the regular part of the correlation function) this implies that T (z1)
must scale as z�4

1 as z1 ! 1. Based on these arguments, this means that we can write
down the correlation function hT (z1)T (z2)i as

hT (z1)T (z2)i =
c/2

(z1 � z2)4
, (39)

where c is a constant fixed for a given system and c̄ would correspond to the constant
associated to the antiholomorphic version of eq. (39). This constant c is one of the most
important object in CFT and is referred to as the central charge [1, 2, 3, 6, 21, 22]. The
latter will be of utmost importance when dealing with minimal models. We can now use
eq. (33) and explicitly derived an expression for �

�

T (as in eq. (38) we simply substitute
� by T under the assumption the latter is primary. This still holds but in a quantum
theory, things tend to behave di↵erently as we shall see). The fluctuation in T (z) reads

h�
�

T (z)i = 1

2⇡i

Z
C

dz�(z) hT (z)T (w)i = 1

2⇡i

Z
C

dz�(z)
c/2

(z � w)4
=

c

12

d3�(z)

dz3
, (40)

where the Cauchy’ s residue theorem was used. Hence it seems that now one has a
symmetry breaking term on the far left hand side of eq. (40) which must be added to eq.
(38). This is the conformal anomaly and the equivalent OPE is

T (z)T (w) ⇠ c/2

(z � w)4
+

2T (w)

(z � w)2
+

@T (w)

(z � w)
, (41)

11An important assumption is made here, we are actually treating T (z) as a primary field which fine
classically however in a quantum theory this transformation is altered due to normal ordering [1].
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where a similar relation for the T (z̄)T (w̄) exists. Specific models have specific non-
vanishing c values fixed for each of these models [1, 3]. E.g: c = 1 for bosons and c = 1/2
for massless12 fermions.

The emergence of the central charge, or the conformal anomaly in systems indicates
symmetry breaking of the infinite-dimensional Lie algebra of conformal symmetry. The
central charge also arises when introducing a macroscopic scale by working with a con-
formal field theory on a two dimensional curved surface [1, 20]. Hence the expectation
value of the stress-energy tensor,

⌦
T µ

µ

↵
which is zero in flat space is not anymore in curved

space but it equal to ⌦
T µ

µ

(x)
↵
=

c

24⇡
R(x), (42)

where R(x) is the Ricci tensor. This is referred to as the trace anomaly in two dimensions
and a complete derivation is found in Ref. [1] (Pg. 140, App. 5.A.) and further details
in about the trace anomaly in D > 2 can be found in Ref. [20].

2.3 Simple case study: massless free fermion

We shall now consider the action for the massless Majorana fermion, � [1]

S =
1

4⇡

Z
d2x �̄�µ@

µ

�, (43)

where �µ are the Dirac matrices which closes under the Dirac algebra {�µ, �v} = 2I⌘µ⌫ ,
where ⌘µ⌫= diag(1, 1) in two dimensions. Using the following representation for the
Gamma matrices

�0 =

✓
0 1
1 0

◆
; �1 = i

✓
0 �1
1 0

◆
) �0(�0@0 + �1@1) = 2

✓
@
z̄

0
0 @

z

◆
, (44)

the action13 (43) can be expressed in terms  ̄ and  where � = ( ,  ̄) is the two compo-
nent spinor such that

S =
1

4⇡

Z
d2x ( ̄@ ̄ +  @̄ ), (45)

where @̄ = @
z̄

and the equations of motion are @ ̄ = 0 and @̄ = 0. From the ac-
tion above, we can then extract the OPE for the fermion field with itself which reads
 (z) (w) ⇠ 1/(z � w) and similarly for the antiholomorphic sector. The sign of the
latter is altered upon reversing the order of the fields as we are dealing with fermionic
fields, this is also reflected later when using radial ordering in section (3.3). This result is
achieved by calculating the propagator h�

i

(x)�
j

(y)i for i, j = 1, 2 upon using the kernel14

A
ij

(x,y) = (1/4⇡)�(x � y)(�0�µ)
ij

@
µ

and the representations in (44). The two-point
function is therefore K

ij

(x,y) = A�1
ij

(x,y) A complete derivation can be found in Ref.
[1] (Pg. 130) which is similar to the bosonic case [1] (Pg. 34).

We want the OPE of the stress-energy tensor with itself, in order to do so we recall
the definition of the latter as

T µ⌫ =
�L

�(@
µ

�)
�⌫ � gµ⌫L, (46)

12We essentially treat massless cases since a theory with m 6= 0 at criticality breaks conformal invari-
ance.

13We have already fixed the normalization which makes it easier to work with later on.
14A kernel of a path integral (i.e: a kernel of an integral transform) is the object which governs the

time evolution of the system. It is also referred to as the propagator [24] of the system.
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where � is an arbitrary field with L corresponding to the integrand from (45) and then
work with respect to  . The indices µ = 0, 1 are replaced by z, z̄ respectively such that
normal ordered expression for the holomorphic and antiholomorphic stress-energy tensor
read

T (z) =
1

2
:  (z)@ (z) : T̄ (z̄) =

1

2
:  ̄(z̄)@̄ ̄(z̄) : (47)

where the normal ordered product is :  @ : (z) = lim
z!w

( (z)@ (w) � h (z)@ (w)i)
and the normalization T zz = 2⇡T (z) (similarly for T̄ (z̄)) was used15 [1]. After adequate
successive Wick contractions and use of the OPE of  (z) with itself, the OPE of T (z) up
to non-singular terms with itself then reads [1, 24]

T (z)T (w) =
1

4
:  (z)@ (z) ::  (w)@ (w) :

=
1

4


@ (z)@ (w)

(z � w)
� @ (z)@ (w)

(z � w)2
�  (z)@ (w)

(z � w)2
� 2

 (z) (w)

(z � w)3
+2

 (z) (w)

(z � w)4
�  (z) (w)

(z � w)4

�
=

1

4


(@ (w))2

(z � w)
� @ (w) (w)� (z � w)@2 (w) (w)

(z � w)2
+
 (w)@ (w) + (z � w)(@ (w))2

(z � w)2

�2
 2(w)(z � w)@ (w) (w) + 1/2(z � w)2@2 (w) (w)

(z � w)3
+

1

(z � w)4

�
=

1

4

1

(z � w)4
+

2

(z � w)2
(1/2 (w)@ (w)) +

1

(z � w)
[@(1/2 (w)@ (w))],

where we worked in the limit z ! w. From the second equality to the third one, we have
used a trick to extend the terms. It can be noted that some terms in the third equality
does cancel to give back the set of terms in the second line. The final form of OPE of
T (z)T (w) which is

T (z)T (w) =
1/4

(z � w)4
+

2

(z � w)2
T (w) +

1

(z � w)
@(T (w)) (48)

where we have used the fact that T (w) = (1/2 (w)@ (w)) from (47). Upon comparing
with definition in eq. (41), we note that c = 1/2 for fermionic field �(z). The motivation
of this example is based on the fact that the Ising model is identified as a massless free
fermion at criticality. The case c = 1/2 will be shown later to corresponds to the minimal
theory M(3, 4) whose critical exponents are found to correspond exactly to those of the
2D Ising model [2, 8, 9].

2.4 A discussion on the renormalization group and CFT

The modern stance on renormalisability was mostly motivated through the works of Wil-
son by providing an intuitive interpretation of scale dependence in quantum field theory.
The essential idea is more about predictability rather than mathematical consistency of
the physics at large scale [24]. In quantizing fields, an infinite number of degrees of free-
dom plague our quantum field theories such that naively performed quantum corrections
diverge. Regularisation of momentum integrals is required which results in inserting an
energy scale (which is completely arbitrary) by hand on which physical quantities will
depend on hence preventing the divergence. This is essentially the bottom line of renor-
malisation. The typical renormalisation group (RG) illustrates a flow in the space of field
theories generated by an alteration in the overall energy scale. For example, in statistical

15This explains why the factor of ⇡ from the action in (43) and (45) is not present in (47) anymore.
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mechanical models we are generally presented with an action functional endowed with
an initial cuto↵ ⇤. Dependence on this initial cuto↵ is not important anymore when the
correlation length, 1/⇤ ! 1. In this regime, one can get rid of the dependence on the
initial cuto↵ and include instead an arbitrary energy scale which would be associated to
point of the renormalisation curve within the vicinity of an infrared fixed point. Actually
1/⇤! 1 is characteristic of critical phenomena arising in a statistical mechanical system
such that the removal of the initial cuto↵ is comparable to adjusting our system towards
a fixed point. In this region near the infrared fixed point, the action functional would be
characterised by {gi} [7, 24], where {gi} is the set of dimensionless coupling constants.

2.4.1 RG flow and the c-theorem

The RG flow is characterized by the Callan-Symanzik equation [24] which is derived in
this subsection. We shall also demonstrate how the central charge, c of a two dimensional
CFT appears as a result of the irreversibility of the RG flow [7] up to perturbation. We
start with the variation of an action A under the infinitesimal variation xµ = xµ + ✏µ(x)

�
✏

A =

Z
d2x@

µ

✏
⌫

(x)T µ⌫(x), (49)

where we have A representing a string of fields �1(x1)�2(x2)...�n

(x
N

) such that the fields
�
i

with �
i

2 A where A is a vector space and assumed to be infinite dimensional. Hence
we can write [6] (Ch. 3)

NX
i=1

h�1(x1)...�i�1(xi�1)�✏�i

(x
i

)�
i+1(xi+1)...�N

(x
N

)i =

Z
d2x@

µ

✏
⌫

(x) hT µ⌫(x)�1(x1)...�N

(x
N

)i , (50)

where �
✏

� will depend linearly on ✏(x) as we’ ve derived earlier. A closer look at the
infinitesimal transformations [1, 6] we have ✏

µ

(x) = ✏
µ

, ✏
µ

(x) = !
µ⌫

x⌫ where !
µ⌫

is
antisymmetric and lastly ✏µ = (1/2) dt xµ corresponding to infinitesimal rotations, trans-
lations and scale transformations respectively. Considering D as the operator acting in
A such that

�
✏

�(0) = dtD�(0), �i�
✏

�(x) = dt(xµP
µ

+D)�(x), (51)

where t is a renormalization group parameter and the operator �
✏

for translations is simply
i✏µP

µ

which has been used in the second equation in (51) leading to a reformulation of
eq. (50)

NX
i=1

⌧✓
xµ

i

d

dxµ

i

+D
i

◆
�1(x1)...�N

(x
N

)

�
= �

Z
d2x h⇥(x)�1(x1)...�N

(x
N

)i , (52)

where we have substituted the second equation in (51) in the left hand side of (50) and ⇥
stands for the trace of T

µ⌫

. The integral on the left hand side of (52) actually diverges [6]
such that we set D to contain the dependence on the cuto↵ parameters discussed earlier.
Hence the description about the details of a field theory transforming under dilations is
given by the renormalisation group.

We would like to be able to understand and explicitly write down the basic constituents
of the renormalisation group associated to our original action functional A in (50). In
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order to proceed, one define first the following functional integralZ
D'(�1(x1)...�N

(x
N

))exp[�L(')], L(') =

Z
d2xL('(x), @

µ

'(x)), (53)

where L is an action density and '(x) represents a set of fields locally defined [6]. The set
{ga} defined earlier is treated as coordinate system in A such that L would be a function
of this general; infinite set, i.e: L = L

g

. We define the local function,  
a

(x) 2 A as

 
a

(x) :=
@

@ga
L

g

('(x)). (54)

We proceed to di↵erentiate (47) with respect to ga to get

@

@ga
h(�1(x1)...�N

(x
N

))i =

NX
i=1

h�1(x1)...�i�1(xi�1)Ba

�
i

(x
i

)�
i+1(xi+1)...�N

(x
N

)i �
Z

d2x h 
a

(x)(�1(x1)...�N

(x
N

))i ,

(55)
where the B

a

� = @

@g

aA. The second line in eq. (55) is obtained from the first line
by simple application of the product rule and definition (54). The trace of the stress-
energy tensor can be represented in terms of basis vectors as [6] which we understand by
comparing (55) and (52)

⇥(x) = �a(g) 
a

(x), (56)

where �a(g) are the components of the renormalisation group which are the well-known
�-functions [6, 7]. The major part of this analysis of the renormalisation group is almost
complete. By comparing eq. (52) and (55) and substituting the integral part of (52) in
(55) we can finally obtain the Callan-Symanzik equation [6, 7, 24]

NX
i=1

⌧✓
xµ

i

d

dxµ

i

+ �
i

(g)

◆
�1(x1)...�N

(x
N

)

�
=

X
a

�a(g)
@

@ga
h�1(x1)...�N

(x
N

)i , (57)

where �
i

(g) = D � �aB
a

is a linear operator acting on the fields �
i

and is generally a
matrix. From the Callan-Symanzik equation, we have that dga = �a(g)dt and the solu-
tion for �a(g) as mentioned by Zamolodchikov [7] is an indication of criticality (i.e: when
�a(g⇤) = 0 at g = g⇤, where g⇤ is identified as a fixed point).

We can now proceed to understand the c-theorem in two dimensions. As per the
positivity condition [7, 24], the following set of two-points functions can be defined on C,

2z4 hT (z, z̄), T (0, 0)i |
zz̄=1 = C(g)

z3z̄ hT (z, z̄),⇥(0, 0)i |
zz̄=1 = H(g) (58)

z2z̄2 h⇥(z, z̄),⇥(0, 0)i |
zz̄=1 = G(g),

where we have the normalization zz̄ = 1 which is taken to be much larger than the
ultraviolet (UV) cuto↵ for an arbitrary scale and zz̄ = et. Applying the condition that
@
µ

T µ⌫ = 0 followed by Callan-Symanzik equation (and the product rule) to the two point
functions in (58) we end up with

z̄@̄(2z4 hT (z, z̄), T (0, 0)i) + z@(z3z̄ hT (z, z̄),⇥(0, 0)i)� 3 hT (z, z̄), T (0, 0)i = 0, (59)
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z̄@̄(z3z̄ hT (z, z̄),⇥(0, 0)i)� z@ h⇥(z, z̄),⇥(0, 0)i)+
2 h⇥(z, z̄),⇥(0, 0)i)� hT (z, z̄), T (0, 0)i = 0. (60)

The above two equations can be also expressed as, using (58)

Ċ � Ḣ + 3H = 0 (61)

Ḣ �H � Ġ+ 2G = 0, (62)

where the dot represents derivative with respect to t since we have defined t earlier to be
equal to log(zz̄). We now multiply eq. (62) by 3 and add it to eq. (61) which leads to

ċ = �12G, (63)

where c = 2F � 4H� 6G represents the famous c-function which is indeed monotonically
decreasing because G is positive from positivity condition asserted earlier. Hence at fixed
point, when g = g⇤ we have that @c(g⇤)/@ga = 0 such that �a(g⇤) = 0 as previously
inferred. Stationary points of c are therefore naturally fixed points and this relation is
actually two fold and can be reached non-perturbatively from constraints imposed by
the operator algebra and bootstrap methods. At fixed point, we know that the trace of
the stress-energy tensor vanishes such that the last two equations in (58) equate to zero,
hence we are left with

hT (z, z̄), T (0, 0)i |
g

a=g

a
⇤ =

c(ga⇤)

2z4
, (64)

where c = c(ga⇤) represents the central charge of the Virasoro algebra in two dimensions.
Hence classification of fixed point indeed lead to classification of CFTs (i.e: minimal mod-
els) which are characterized by the c value. This completes the proof of Zamolodchikov
c-theorem.

3 The general structure of conformal field theory

In order to explore the consequences of conformal symmetries in two dimensions, we
review in more details the procedure to construct a quantum theory of conformal fields.
The theories we are working with are usually defined in the Euclidean space where we
treat the holomorphic and anti-holomorphic sectors separately. This description of the
holomorphic and anti-holomorphic left and right movers respectively in the complex plane
make things computationally more convenient. Things can however be further simplified
by conformally transforming the complex plane itself.

3.1 Radial quantization

In order to implement the technique of radial quantization we first define the mapping
z ! w = e2⇡z/L, where z = z1 + iz2 (or equivalently z̄ = z1 � iz2) which will map a
cylinder (where our theories are usually defined) to the Riemann sphere, S2 := C [ 1.
The remote past on the cylinder extends to �1 while the remote future extends to +1
[1, 3], where this time coordinate is parametrised by z1. The space along the circumfer-
ence of the cylinder parametrised by z2 where z2 2 [0, L]. It can be noted that only one
coordinate matters after the mapping. The points z1 = �1,+1 is mapped to z = 0,1
respectively. A quantum conformal field theory is obtained by constructing operators
that will lead to desired conformal mappings of the complex plane. This is illustrated by
looking at a time translation z ! z+� which would simply be a dilation on the complex
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plane, z ! e�z. Hence the latter acts as a generator of the Hamiltonian and surfaces of
constant radius defines the Hilbert space [3].

We proceed by assuming the existence of a vacuum state |0i which is used to construct
a Hilbert space, H by repeated application of the creation operators and further assume
that interacting fields just as free fields live in H but have di↵erent energy eigenstates.
We can treat the interaction in such a way that it tends to zero in the limit z1 ! �1
on the cylinder which corresponds to z ! 0 on the complex plane. Hence the asymptotic
field can be expressed as

�
in

= lim
z1!�1

�(z1, z2). (65)

In radial quantization, �
in

reduces to a single operator and defines an in-states by acting
on |0i

|�
in

i = lim
z,z̄!0

�(z, z̄)|0i. (66)

It is natural to look for a similar definition for the so called out-states h�
out

| i.e: when
z ! 1. Through the conformal symmetry, coordinates in the neighborhood of the point
at 1 to the coordinates of the region around the point z = 0 (origin) using the mapping16

z = 1/w. For the out-state we therefore write

h�
out

| = lim
w,w̄!0

�(w, w̄). (67)

The above is then related to �
in

by the following transformation when w ! g(w) where
g(w) = 1/w, hence

�(w, w̄) = �(g(w), ḡ(w̄))(�w�2)h(�w̄�2)h̄ = �

✓
1

w
,
1

w̄

◆
(�w�2)h(�w̄�2)h̄, (68)

which follows from transformation properties of primary fields introduced previously. We
can now used the above and substitute it in (67) such that

h�
out

| = lim
w,w̄!0

h0|�(w, w̄) = lim
z,z̄!0

h0|
✓
1

z
,
1

z̄

◆
1

z2h
1

z̄2h̄
= lim

z,z̄!0
h0|[�(z̄, z)]†, (69)

where we have the adjoint representation of �(z, z̄) in the last equality in (69) such that
lim

z,z̄!0h0|[�(z̄, z)]† = [lim
z,z̄!0 �(z, z̄)|0i]† which is essentially |�

in

i†. Therefore h�
out

| =
|�

in

i†. This relation between in- and out-states will be important when constructing the
operator algebra as they can be used to construct a Hermitian product as shown in Ref.
[1] (Pg. 152).

3.2 Radial ordering

In quantum field theory (QFT) , the following correlation function defined as functional
integrals in the Euclidean space is automatically time ordered (convergent) [1, 24],

h�1...�n

i = lim
✏!0

R
[d�](�1...�n

)exp{iS
✏

[�]}R
[d�]exp{iS

✏

[�]} . (70)

16We must note that the out-state is associated to Hermitian conjugation on conformal fields. This
actually a↵ects the Euclidean time ⌧ = it leading to a reversal ⌧ ! �⌧ upon Hermitian conjugation.
It is understood [3] that a reversal in parameters on the cylinder corresponds to an inversion on the
complex plane when radially quantised (or S2 in our case) justifying our choice of mapping.
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In radial quantization the same kind of ordering takes place and is referred to as radial
ordering which is expressed as

R 1(z) 2(w) =

(
 1(z) 2(w) if |z| > |w|
 2(z) 1(w) if |z| < |w|,

(71)

where the overall sign of the second term in (71) is negative if  represents fermions.
We shall relate to the operator product expansions. Both sides of an operator product
expansion is to have an operator meaning according to (71). We now demonstrate how
the OPEs can be related to commutation relations by first defining two holomorphic fields
�(z) and  (w) by considering the following contour integral which we split into two fixed
time contours going in opposite direction such thatI

w

dzR�(z) (w) =
I
|z|>|w|

dz�(z) (w)�
I
|z|<|w|

dz (w)�(z) = [�, (w)], (72)

where the integral on the left hand side is centered at w and � =
H
dz�(z) represents the

contour integral of �(z). We can start to see how the equal-time commutator [�, (w)] is
obtained from radially ordered product on left hand side of (72). This is true because for
the two contours we have C1 and C2, the radii are initially set as being equal to |w| + ✏
and |w| � ✏ respectively and taking the limit ✏ ! 0 justifies the last equality in (72)
Essentially the commutator of two operators, � and  is

[�, ] =

I
0

dw

I
w

dz�(z) (w), (73)

where  =
H
dz (w) and the integral over w is evaluated around the origin and the

integral over z is evaluated around w.

3.3 Mode expansions

A central tool for studying conformal fields and conformal families is the mode expansion
of the field �(z, z̄) with conformal dimensions (h, h̄) which we briefly discussed here by
following closely the prescription of Ref. [1] (Pg. 153). The conformal field �(z, z̄) can
be mode expanded through its Laurent series (for both holomorphic and antiholomorphic
sectors) as

�(z, z̄) =
X
m2Z

X
n2Z

z�m�hz̄�n�h̄�
m,n

, �
m.n

=

✓
1

2⇡i

◆2 I
dzzm+h�1

I
dz̄z̄n+h̄�1�(z, z̄).

(74)
By simply considering the definition of the adjoint of �(z, z̄) used earlier in eq. (68) and
use it on the left hand side of (74) and comparing terms upon simply taking the conjugate
�(z, z̄)† we end up with the following

�†
m,n

= ��m,�n

, (75)

which is the Hermitian conjugate of the expression on the left hand side of (74). For
well-defined in- and out-states the action on |0i is

�
m,n

|0i = 0, (m > �h, n > h̄). (76)
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3.4 The Virasoro algebra

In QFT, the generator of infinitesimal time translations is the Hamiltonian, Ĥ which is
represented generally by the integral of T 00, i.e: the time component of the stress-energy
tensor. This is a consequence of time translation symmetry in quantum mechanics. We
have something analogous in CFT which was discussed in section (3.1) and it is the
dilation operator, D̂ on the complex plane which is seen as the Hamiltonian. This is a
consequence of scale invariance. Hence we have

D̂ =
1

2⇡i

 I
0

dz zT (z)�
I
0

dz̄ z̄T̄ (z̄)

�
= L0 + L̄0, (77)

where the chosen contour is analytic such that it circles the origin and L0 + L̄0 generates
dilations. From (77) we can infer that L

n

can T (z) can be related using mode expansions
(74) and similarly for the antiholomorphic components such that

L
n

=
1

2⇡i

I
dz zn+1T (z), T (z) =

X
n2Z

z�n�2L
n

, (78)

where we have used h = 2 in the second expression. A similar set of relations prevails
for the antiholomorphic components, L̄

n

and T̄ (z̄) [1, 19]. In the same way the classical
generators of local conformal transformations obey the Witt algebra derived in (22), the
algebra resulting from commutation relations of generators L

n

and L
m

must close in the
same way except for an extra term. We derive this algebra using eq. (73) and the OPE
in eq. (41),

[L
n

, L
m

] =

✓
1

2⇡i

◆2 I
0

dwwm+1

I
w

dz zn+1RT (w)T (z), |z| > |w|

=

✓
1

2⇡i

◆2 I
0

dwwm+1

I
w

dz zn+1


c/2

(z � w)4
+

2T (w)

(z � w)2
+

@T (w)

(z � w)
+ reg.

�
,

where we can use Cauchy’ s residue theorem in the limit z ! w and evaluate the first
contour integral over z;

=

✓
1

2⇡i

◆I
0

dwwm+1


1

12
c(n+ 1)n(n� 1)wn�2 + 2(n+ 1)wnT (w) + wn+1@T (w)

�

=

✓
1

2⇡i

◆I
0

dw


cn(n2 � 1)/12

wm+n

+ 2(n+ 1)wm+n+1T (w) + wm+n+2T (w)|
w=0

�(m+ n+ 2)wm+n+1T (w)

�
,

the residue theorem is now used by evaluating the w integral for the first term, the third
term is equal 0. We remark that the second and fourth terms above can written in terms
of generators using (78),

=
cn(n2 � 1)

12
�
m+n,0 + 2(n+ 1)L

m+n

� (m+ n+ 2)L
m+n

. (79)

Hence the commutator of generators L
n

and L
m

is

[L
n

, L
m

] =
cn(n2 � 1)

12
�
m+n,0 + (n�m)L

m+n

. (80)
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We note the second term on the left hand side of (80) is equivalent to eq. (22) for classical
generators except that this algebra has an extension which depends on the central charge.
The commutator [L

n

, L
m

] = 0 and a similar expression to (80) exists for [L̄
n

, L̄
m

] and
together with eq. (80), we have the Virasoro algebra, which we can denote as V such
that the conformal algebra is now given as V� V̄ where {L�1, L0, L1}+ antiholomorphic
sector are the generators of SL(2,C) in H.

From eq. (76), it is understood that the vacuum |0i exhibits invariance under global
conformal transformations. That is the latter is annihilated by L

n

(and similarly by L̄
n

)
for n = {�1, 0, 1}. Acting on this vacuum state |0i with primary fields creates eigenstates
of the Hamiltonian H. This can be illustrated by evaluating the equal-time commutation
relation as radially ordered products, substituting in the OPEs of T (z) and �(z, z̄) and
simplifying using the residue theorem just like in (80), we end up with [1, 3]

[L
n

,�(w, w̄)] = h(n+ 1)wn�(w, w̄) + wn+1@�(w, w̄), (81)

where n � �1 and similarly for antiholomorphic counterpart. We therefore have

[L
n

,�(0, 0)] = 0 for n > 0, (82)

L0|hi = h|hi L
n

|hi = 0 for n > 0, (83)

where |hi = �(0)|0i is an in-state (Hamiltonian eigenstate) created by acting on the
vacuum with �(0) having a conformal weight h. We have same relations when h ! h̄ and
L
n

! L̄
n

. The state in (83) is known as the highest weight state whose representations
[9, 12] will be studied section (4.1). Excited states are then obtained by first looking at the
commutation relation [L

n

,�
m

] which is [n(h� 1)�m]�
m+n

such that [L0,�m

] = �m�
m

.
Hence for the eigenstate L0, ��m

(m > 0) act as a creating operator and �
m

, (m > 0) acts
as annihilating operator. This also increases and decreases the conformal dimensions h.
Hence excited states are obtained as

L�k1L�k2 ...L�kn |hi (1  k1  k2  ...  k
n

), (84)

where the states above are known as descendants of primary state |hi and the eigenvalue
is generally expressed as

h0 = h+ k1 + k2 + ...+ k
n

= h+N, (85)

where N is the level of the descendant.

3.5 Conformal families

We explore a bit more the descendant fields, and their role in CFT. The remaining fields
associated to the states, L�n

|hi in (85) are obtain by repeated application of the regular
part of the OPE of �(0) with the stress-energy tensor. The descendant field is therefore
defined as [1]

��n(w) ⌘ (L�n

�)(w) =
1

2⇡i

I
w

dz(z � w)1�nT (z)�(w). (86)

From the OPE of T (z) with �(w), we can identify the following relations

�(0)(w) = h�(w), �(�1)(w) = @�(w). (87)
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The correlation functions of the descendants can be understood by understanding the
properties of the primary field. In order to do so, we consider the correlator

hL�n

�)(w)Xi , (88)

where X = �1(w1)...�N

(w
N

) represents a string of primary fields with holomorphic con-
formal dimensions h

i

. Using eq. (86) we reverse the contour around w
i

by denoting the
boundary as {w

i

} and evaluate using the residue theorem. From the OPE in eq. (37)
and (88), we have ⌦

��n(w)X
↵
=

1

2⇡i

I
w

dz (z � w)1�n hT (z)�(w)Xi

= � 1

2⇡i

I
{wi}

dz
X
i


(z � w)1�n

z � w
i

@
wi

+
(z � w)1�n

(z � w
i

)2
h
i

�
h�(w)Xi (89)

=
X
i


� @

wi

(w � w
i

)n�1
+

(n� 1)

(w
i

� w)n
h
i

�
h�(w)Xi ,

where the residue theorem was used to get the last equation. The expression in the square
brackets is defined as

L
n

:=
X
i


� @

wi

(w � w
i

)n�1
+

(n� 1)

(w
i

� w)n
h
i

�
, n � 1. (90)

Eq. (90) is a di↵erential operator which is used to obtain the derivative of the primary
field, i.e: the descendants. We can generalize (80) by recursively applying this di↵erential
operator which leads to⌦

�(�k1,...,�kn)(w)X
↵
= L�k1 ...L�kn h�(w)Xi . (91)

Hence a conformal family [�] is essentially a set of primary field (the ancestor field) �
and all of its descendants with conformal dimensions h

i

and also comprising of the whole
antiholomorphic sector.

3.5.1 The operator algebra

As seen above, we can argue that all the data concerning the conformal field theory is
enclosed in the correlation function which forms the principle entity in field theory. Con-
formal invariance imposes strong constraints on the 2- and 3- point functions and allows
us to derive explicitly the conformal data (i.e: spins and scaling dimensions). However
the information derived from conformal symmetry is limited to the 3-point and still then
some data needs to be inserted by hand [1, 22]. In order to be able to fully solve our
theory, we invoke the operator algebra which provides us with more constraints on top of
those from conformal invariance. The algebra of local fields was devised and extensively
researched by the authors from Ref. [2, 13, 14, 21] in order to calculate critical exponents
exactly.

We will now look at the OPE in a slightly more formal way than in the previous sec-
tions. From eq. (26) we know that 2-point functions vanishes if the conformal dimensions
di↵ers. In the complex plane, the former reads

h�
m

(z, z̄)�
n

(w, w̄)i = C
mn

1

(z � w)2h
1

(z̄ � w̄)2h̄
, (92)
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where C
mn

is a symmetric coe�cient. The OPE is generally defined [3] as  (x)�(y) ⇠P
i

C
i

(x�y)O
i

(y), where O
i

the product is expanded in terms of a basis of local operators
O

i

with coe�cients C
i

. The latter depends on the coordinates such that C
i

⇠ |x �
y|dOi

�d �d� from simple dimensional analysis. The OPE for (86) then reads

�
m

(z, z̄)�
n

(w, w̄) ⇠
X
�

C
mn�

(z � w)h��hm�hn(z̄ � w̄)h̄��h̄m�h̄n�
�

(w, w̄), (93)

where C
mn�

is symmetry under permutation of indices. The issue that is presented
here is the di�culty in writing OPE for the descendants in terms of primary fields.
Orthogonality of primary fields [1, 2, 3] implies orthogonality of the descendants, hence
from scale invariance we express (93) in terms of secondary (descendant) fields via the
OPE the operator algebra reads

�
m

(z, z̄)�
n

(0, 0) ⇠
X
p

X
{k,k̄}

Cp{k,k̄}
mn

(z)hp�hm�hn+K(z̄)h̄p�h̄m�h̄n+K̄�{k,k̄}
p

(0, 0), (94)

where the Cp{k,k̄}
mn

is the coe�cient of the operator algebra17 and �{k,k̄}
p

(0, 0) represents
the set of descendants fields. Again dimensional analysis is useful in determining the
respective conformal dimensions above. Since properties of descendants follows from
properties of primary fields, we can argue that the coe�cient in (94) takes the following
form

Cp{k,k̄}
mn

= Cp

mn

�p{k}
mn

�̄p{k̄}
mn

, (95)

where the coe�cients �p{k}
mn

and �̄p{k̄}
mn

are determined in terms of the central charge by
requiring that both sides the operator algebra obey conformal symmetry. A complete
example can be found in Ref. [1] (Pg. 181-182) however it can be noted that dealing
with cases when the descendant level get slightly larger becomes very tedious even though
the theory is solved exactly. The coe�cients for higher point functions have to be deter-
mined via some other method and the conformal bootstrap, introduced in the following
subsection, provides an adequate formalism in order to do so.

3.5.2 Conformal blocks, duality and the bootstrap

The bootstrap formalism introduced in this section is based on Refs. [26, 27, 29]18. We
will be denoting scalars by  

i

(x) in this section. The bootstrapping procedure is started
by first recalling the definition of the OPE in section (3.5.1) which can be expressed19 as

 
i

(x) 
j

(0) =
X
k

C
ijk

(1 + @ + ...) 
k

(0) =
X
k

C
ijk

F(x, @) 
k

(0), (96)

17This is the coe�cient that Zamolodchikov reached in deriving the c-theorem [7]. The latter was
obtained via perturbative methods where ✏(x) << 1.

18 This is the bootstrapping procedure developed by R. Rattazi et al. in Ref. [29] providing a novel way
to construct conformal blocks, i.e: via a geometrical approach. This method so far has been successful as
noted by the accurate bounds obtained in [27, 29] and can be applied to fermions. This is because such
framework can provide a window for explaining the data presented in [28], where minimal models are
seemingly realized at the boundary of a topological superconductor. Due to time constraints it was not
possible to go through the details however the plan for future research shall begin from the framework
discussed above but applied to fermions.

19This is essentially writing OPEs like (37) in a more compact way and generalizing for the rest of
the less singular terms. We also note that (96) has an equal sign instead of the usual ⇠ symbol. There
are two reasons for that: (i) Eq. (96) is an exact result that can be employed in path integrals [26]. (ii)
The di↵erence between the axiomatic formulation of a product in CFT and the OPE in (96) is about
convergence which is crucial for numerical analysis [22, 26] but analytically we can work with both.
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where F(x, @) = (1 + @ + ...) represents the descendants contribution which we know
from (95) [1](Pg. 181) is fixed by conformal invariance and C

ijk

is the OPE coe�cient.
The question is how to determine D(x, @) for 2-, 3- and n-point functions? One way to
proceed is to write down the 3-point function and reduce to a 2-point function

h 1(x1) 2(x2) 3(x3)i =
X
k

C12kF(x12, @2) h 2(x2) 3(x3)i , (97)

From eq. (26) and (27), we work out both the l.h.s and r.h.s of (97)

C123

xh1+h2�h3
12 xh2+h3�h1

23 xh3+h1�h2
13

= C123F(x12, @2) h 2(x2) 3(x3)i , (98)

such that
1

xh1+h2�h3
12 xh2+h3�h1

23 xh3+h1�h2
13

= F(x12, @2)

✓
1

x2�3
23

◆
, (99)

where F(x12, @2) can be fully solved by relating a 2- and a 3-point function using conformal
invariance. Information concerning the CFT in question is therefore reached faster than
the method described in [1] (Pg. 181). These results seem promising so we proceed along
the same line for the 4-point function,

h 1(x1) 2(x2) 3(x3) 4(x4)i =
X
k

Ck

12C
k

34F(x12, @2, x34, @4) h 2(x2) 4(x4)i , (100)

where we have simply used the fact that  1(x1) 2(x2) =
P

k

Ck

12F(x12, @2) k

(x2) and
 3(x3) 4(x4) =

P
k

Ck

34F(x34, @4) k

(x4). The l.h.s of (94) is therefore equal to

X
k

Ck

12C
k

34F(x12, @2, x34, @4)

✓
1

x2�k
24

◆
, (101)

such that for a 4-point function we end up with two
P

F acting on a 2-point function.
From conformal symmetry, the form of the 4-point function is

h 1(x1) 2(x2) 3(x3) 4(x4)i =
g(u, v)

x2�
12 x

2�
34

, (102)

where u and v are respectively defined20 as (x2
12x

2
34)/(x

2
13x

2
24) and (x2

23x
2
14)/(x

2
13x

2
24). The

latter are conformally invariant therefore does not provide enough constraint to fix the
4-point function. By trivially inserting the prefactor 1/(x2�

12 x
2�
34 ) in (101) and comparing

with (102), the function g(u, v) reads

g(u, v) =
X
k

Ck

12C
k

34F(x12, @2, x34, @4)

✓
1

x2�k
24

◆
=

X
k

Ck

12C
k

34g�k,sk
(u, v), (103)

where g�k,lk
= F(x12, @2, x34, @4)(1/x

2�k
24 ) represents the conformal data (i.e: scaling di-

mensions �
i

and spins s
i

) and The functions defined above in (103) are called the con-
formal blocks21 [1, 2, 26]. Only the holomorphic sector was considered in deriving (97)

20
u and v are also expressed as zz̄ and (1 � z)(1 � z̄) respectively as this provides a way for explicit

solution of g(u, v). A complete derivation of the latter can be found in Ref. [26] (Pg. 45) using a second
order di↵erential is solved leading to some hypergeometric function analysis and also via using series
expansion in terms of radial coordinates.

21This expressions corresponds to eq. (6.188) in Ref. [1] (Pg. 185).
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for simplicity but the antiholomorphic components bear a similar structure to the former.

These expressions are symmetric under contraction of the indices (12; 34) $ (14; 23)
such that one can writeX

k

Ck

12C
k

34g�k,sk
(u, v) =

X
k

Ck

14C
k

23g�k,sk
(v, u), (104)

where the exchange x1 $ x3 and x2 $ x4 simply implies the exchange u $ v when
looking at the definitions for u and v given above under (102). This duality between
the conformal blocks under contraction of the indices is referred to as crossing symmetry
[1, 2, 26] and as one can note it imposes a very strong (non-perturbative) constraint for
determining the conformal data; �

i

and coe�cients Ck

mn

. Eq. (104) is central is providing
us with information required to solve our theory and much progress was made in solving
the former in d � 3 [23].

3.5.3 The four point function

The critical exponents of the four-point function of the Ising model can be calculated
using (102) and (103). The four-point function will be the four spin correlator (since the
Ising model is identified by the spin operator � and its energy operator "), hence

h�(z1, z̄1)�(z2, z̄2)�(z3, z̄3)�(z4, z̄4)i ⇠
1

|z12z34|1/4

(C

��I)
2+(C

��"

)2
1

z2�24
+...

�X
k

F(x
k

, @
k

),

(105)
where F(x

k

, @
k

) as mentioned above and in Ref. [2, 3] can be simplified since it is, in two
dimensions, a representation of the anharmonic ratios (28). In Ref. [2] (App. E), the
four-point is shown to satisfy a second order di↵erential equation whose solution leads to
hypergeometric function which is reduced into an elementary function. The latter can
then be Taylor expanded. By comparing these two methods we can find explicit values
of structure constant C

ijk

in (99). From the second method, have

h�(z1, z̄1)�(z2, z̄2)�(z3, z̄3)�(z4, z̄4)i ⇠
1

2

���� z13z24
z12z34z14z23

����1/4 2X
a,b=1

f
a

(x)f
b

(x̄), (106)

where x = (z12z34)/(z13z24) represents the cross-ratios and
P2

a,b=1 fa(x)fb(x̄) = (|1 +p
1� x| + |1 �

p
1� x|) [3] (Pg. 65). Hence the latter can be Taylor expanded in the

regime x ! 0 and by comparing (106) with the definition of f(x) and (105), the structure
constants read

(C
��I)

2 = 1 and (C
��"

)2 =
1

4
. (107)

These results corresponds exactly to the critical exponents of the Ising model obtained
using operator algebra methods [2, 13, 14, 21] compared to RG flow methods [1](Ch. 3),
[31] and [6] (Ch. 5) where critical exponents are derived perturbatively.

4 Representations of the Virasoro algebra

It is now unequivocal that theories admitting conformal invariance are characterized by
the value of the conformal charge c and the set of holomorphic (and antiholomorphic)
conformal dimensions h (and h̄). Moreover the critical exponents which were briefly
discussed in the previous chapter described the universality class in statistical physics.
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One can therefore ask if it is possible to actually find a given value of c that will determine
all the critical exponents of our theory. The answer is yes and the values of c that we
find correspond to sets of conformally invariant minimal theories admitting universality
class. This is exemplified by constructing and studying the irreducible representations of
the Virasoro algebra, V� V̄.

4.1 Highest weight representations

The representation theory of the Virasoro algebra is very similar to the algebra of angular
momentum, su(2). We therefore recall the algebraic theory of angular momentum from
quantum mechanics [1, 24] as a starting point. The representation space of su(2) is
spanned by states labeled by the eigenvalue J

z

which is one of the generators. The two
others generators are annihilation J+ and creation J� operators. The highest weight state
|ji is defined as the one with eigenvalue J

z

, which is acted up by J� to obtained the other
eigenstates. For the eigenstate |ji, we have

J
z

|ji = j|ji and J+|ji = 0, (108)

where the algebra of the generators closes as: [J0, J±] = ±J± and [J+, J�] = 2J
z

. The
generators are also Hermitian, i.e: J†

i

= J
i

. Using the definition for a state |ni =
(J�)j�m|ji and we know that |n � 1i = J+|ni such that hn� 1|n� 1i = J�J+ hn|ni.
Using the definitions (108) and the fact that j2 is the Casimir operator (commutes with
all generators close to identity), we end up with the following relation

hn� 1|n� 1i = [j(j + 1)� n(n� 1)] hn|ni , (109)

where the dimension of this representation is 2j +1 which is finite and unitary. However
it can be noted that when n is reduced below �j leads to negative norm states unless j is
an integer or half-integer [24]. Hence these negative norm states are not accounted by the
first 2j +1 states. The former then constitute null states (or singular vectors) which will
be important later on when discussing irreducible representations of the Virasoro algebra.

In the case of the Virasoro algebra (as introduced in subsection (3.4)), representa-
tions are obtained by taking the tensor products of the irreducible left (holomorphic)
and right (antiholomorphic) sectors. For the Virasoro algebra V (for the holomorphic
sector) for simplicity, the highest weight state is generated by L0

22 which diagonalises the
representation space forming a Verma module [30]. A Verma module is representation of
V which consists of the Hilbert subspace spanned by the in-state (or asymptotic state)
|hi and its descendants which closes under the action of the Virasoro generators [1] (Pg.
158 for definition). The highest weight state is expressed as |hi which is defined in eq.
(83) as an asymptotic state created by acting on the conformally invariant vacuum |0i.
The commutation relation [L0, Lm

] = �mL
m

allows us to define the creation operator
as L�m

(m > 0) and the annihilation operator as L
m

(m > 0) and descendants states
are created in the same way as described that is by acting repeatedly on the |hi by
L�k1 ...L�kn(1  k1...  k

n

). The first few states of the Verma modules are given in Ref.
[1] (Pg. 202).

22It is reasonable that the highest weight representation is L0 since L0 + L̄0 encountered in section
(3.4) is the Hamiltonian (in radial quantization) which we know is bounded from below [1, 2].
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4.2 Verma modules and singular vectors

The Verma modules form a unitary infinite dimensional representation space23 of the
Virasoro algebra. Unitarity of the modules is reflected by the Hermiticity condition
L†
m

= L�m

which implies that the levels N given in (85) are orthogonal. This motivates
the presence of a positive definite inner product which can be expressed as

hh|L
km ...Lk1L�l1 ...L�ln |hi , (110)

where the latter is evaluated using the Virasoro algebra. One can consider the product
as an example; hh|L

k

L�k

|hi = hh|[L
k

, L�k

]|hi = c(k3 � k)/12 + 2kh. Hence the products
are evaluated by passing the L

kj
over the L

ki
[1]. This example is an important example

inferring that an essential condition for unitarity is h � 0 and also that c � 0 [9, 12]. One
might wonder about structure of the Hilbert space if the bound on c is altered and the
implications on unitarity in general. This require a slightly more sophisticated approach24

which will covered in sections (4.3) and (4.4). Hence for the case presented above, the
Hilbert space H is generally expressed as

H =
M
h,h̄

V (c, h̄)⌦ V̄ (c, h̄), (111)

that is a direct sum of the tensor of the holomorphic and antiholomorphic Verma modules
denoted as V (c, h) generated by the sets {L

n

} and V̄ (c, h̄) generated by {L�n

} respec-
tively for a given value of c.

It is understood that the representations of the Virasoro algebra we found and dis-
cussed above are irreducible [2, 8, 9] otherwise we would not have been able to write down
eq. (105). However it is possible that the representations of V are reducible. In that case,
just as the Verma modules V (c, h) and its antiholomorphic counterpart is generated by
acting on |hi, the submodule present is generated by the highest weight state which is now
denoted25 by |�i such that L

n

|�i = 0 (n > 0) and L�rn ...L�r1 |�i = 0 (1  r1  ...  r
n

).
Hence a state that is destroyed by all L

n

(n > 0) is known as a singular vector (or null
state) where the latter possesses its own Verma module, V

�

leading to a discussion similar
to that of the last paragraph above. Through the operator-state correspondence [25], the
singular vector |�i is related to the null field field �(z) (and similarly for the antiholo-
morphic null field)26 If the Verma module contain numerous null states, the irreducible
representations of the Virasoro algebra are given by taking the quotient of V (c, h) with
respect to the set of singular vectors {�

i

} (i = 1...r) such that

M(c, h) := V (c, h)/{�
i

}, i = 1...r, (112)

M(c, h) represents the actual representation involved in the construction of minimal mod-
els.

23Space is now infinite dimensional unlike representation space of su(2) which is finite.
24The more formal references can be consulted; Ref. [9] (Th. 1) provides a brief discussion on unitarity

when c  1. Ref. [12] for elaboration of the proof in [9] and finally Ref. [10] which tackles the subject by
implementing the a�ne Kac-Moody algebras for finding the discrete set of non reducible highest weight
representation of V.

25We follow the notation given in the short section of Ref. [1] (Pg. 204) as discussions on singu-
lar vectors prevail mostly in mathematical literature [30] and escalate very quickly drifting away from
applications in CFT.

26
�(z) is primary in the Verma submodule but it is secondary since it is a descendant �(z) from the

Verma module (representation of the Virasoro algebra).
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4.3 The Kac determinant

We want to investigate how strong is the bound on unitarity imposed by the Hermicity
condition. The fact that the norm, ||L�k

|hi||2 = hh|L
k

L�k

|hi � 0 if h � 0, c � 0
already seems to impose interesting constraints on the parameters h and c. When c < 0,
representations are non-unitary and does not relate to known minimal theories. In this
subsection we will construct the representations of V up to level 3. The data that we will
be collecting by applying the definition of the norm can be inserted in a matrix denoted as
M (k)(c, h), where k is the level of the representation. At level 0, no relevant information
prevails thus from normalization condition, hh|hi = 1 we have27 M0 = 1. We list the
representations for the first four levels and a complete construction of M (l)(c, h) up to
l = 3 in table. (1) below. At level l = 1, we retrieve the condition h > 0 as imposed by
positive definiteness of the norm seen above. When l = 2 we compute the determinant
of M2(c, h) which is

detM2(c, h) = 32h3 � 20h2 +4h2c+2hc = 32(h� h1,1)

✓
h2 � 5

8
h2c+

1

8
hc+

1

16
c

◆
, (113)

such that the determinant is given by the product of two eigenvalues of M (2). The
expression in the big brackets can be easily factorized as (h � h1,2)(h�2,1) where the
solutions for (113) then reads: h1,1 = 0, h1,2 = (1/16)[5 � c �

p
(1� c)(25� c)] and

h2,1 = (1/16)[5� c+
p

(1� c)(25� c)].

From the above solutions, it can be argued that the interesting cases to look at are:
(i) When one of the eigenvalues of M l(c, h) is negative (or when l is such that we have an
odd number of negative eigenvalues) then detM l(c, h) < 0. This is forbidden and negative
norm state will immediately imply nonunitary theories which are discarded. (ii) When
detM l(c, h) = 0, this now implies that one of the eigenvalues of M l(c, h) is zero suggesting
the presence of null states at l = 1 (i.e: L�1|0i = 0 will coincide with the line h = 0
on the h-c curve [1]). (iii) Finally if detM l(c, h) > 0, then there could be now an even
number of null states. Null states, which we know are defined as L�k1 ...Lkn |h + ni = 0,
suggest for some h-value at level k, the determinant will have a zero of order p(l � k).
Hence (107) is proportional to (h� h1,1)p(1). For a linear combination of states with zero
norm, this definition of the determinant can be generalized to account for all the zero
eigenvalues occurring at level l = pq, where p, q are integers. Hence one have

detM l(c, h) = ↵
l

Y
rsl

[h� h
r,s

(c)]p(l�rs), (114)

where ↵
l

> 0 is a constant and p(l � rs) is the number of partitions. The expression in
(115) is known as the Kac determinant and was explicitly proven in Ref. [30] (Th. 3.1,
Pg 124). The roots for h = h

r,s

and c can be expressed under reparametrization [1] (Ch.
8) as

c = 1� 6

m(m+ 1)
and h

r,s

(m) =
[(m+ 1)r �ms]2 � 1

4m(m+ 1)
, (115)

where the allowed values for m are 3, 4, 5, ... and the restrictions on r and s are 1  r 
m� 1 and 1  s  r. A geometrical interpretation of all this data is given in Figure. (1)
on Pg. 28 but one can start to see that from (108) that the first null state in the reducible
Virasoro Verma module V (c, h

r,s

) occur at level l = rs since the determinant vanishes.

27One can consult Ref. [1] (Pg. 206) for notation details. Note that Mab = ha|bi = 1 i↵ a = b i.e: level
0 and M

† = M . M is known as the Gram matrix [1].
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Furthermore the points on the curves (all of them actually but there are exception which
will be discussed in the next subsection) are associated to the reducible Verma modules,
V (c, h

r,s

) and the region c < 1 is nonunitary which implies that the regions enclosed by
the vanishing curves enclosed are all nonunitary as well [2, 19].

Figure 1: The vanishing curves for the few values of h = h
r,s

on h-c plane. Image from
Ref. [3]

4.4 Unitary representations

4.4.1 c � 1

We have made an interesting claim above that c < 1 represents nonunitary theories. A
sketch of this proof can be found in Ref. [9] and [12]. However we first convince ourselves
that the region c � 1, h > 0 is unitary. One can recall that before a less strict bound
on c, where c � 0 was shown to exist from positive definiteness condition. We now
extend this argument to c � 1 and follow the steps of Ref. [1]. From the solutions of
(113), h

r,s

(c) is not real for 1 < c < 25 leading to an imaginary part (or even  0).
For c � 25 we are free to choose the constraint �1 < m < 0 such that all h

r,s

(m)  0
from eq. (115) (Note one goes from h

r,s

(c) ! h
r,s

(m) because we are working with two
di↵erent reparametrization28 of h

r,s

[1]). This means that detM l(c, h)|
c�25 > 0 indicating

all positive eigenvalues, and for large h, detM l(c, h) ⇡ ↵h from eq. (114), hence this is

28
hr,s(c) can expressed di↵erently, one way is hr,s(c) = h0+(1/4)(r↵++s↵�)2 where h0 = (1/24)(c�1)

and ↵± = (
p
1� c ±

p
25� c)/

p
24 such that upon substituting directly h0 and ↵± in hr,s(c), one end

up with

hr,s(c) =
1� c

96

⇢
(r + s) + (r � s)

r
25� c

1� c

�2
� 4

�
.
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Level l Representations of V (c, h) M (l)(c, h)

0 |hi M (0)(c, h) = 1

1 L�1|hi M (1)(c, h) = 2h

2 L2
�1|hi, L�2|hi M (2)(c, h) =

✓
4h(2h+ 1) 6h

6h 4h+ c/2

◆

3 L3
�1|hi, L�1L�2|hi, L�3|hi M (3)(c, h) =

0@24h(1 + h)(1 + 2h) 12h(1 + 3h) 24h
12h(1 + 3h) h(8 + c+ 8h) 10h

24h 10h 2c+ 6h

1A

Table 1: Evaluation of the Gram matrix M (l)(c, h) for the first (lowest) states of the Virasoro Verma representation, V (c, h)
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all positive and non-zero in the region c > 1, h > 0 leading to unitary theories in the
domain in question. The case then c = 1 acts as a threshold between nonunitarity and
unitarity and does not provide further information such that points lying on line c = 1
will also be unitary.

4.4.2 c < 1

The sector when c < 1 is not easy to assess, it was claimed and proven by the authors in
Ref. [9] that even if the norm of the states lying in the region 0 < c < 1 are negative thus
leading to nonunitarity, there exists a discrete set of points that fits the representation
in eq. (115) which exhibits unitarity, Such proof require coset construction which is
discussed in Ref. [1] (Ch. 18) and goes beyond this work. However it can be easily
understood from the basic principles employed above. Let’ s consider the matrix M l(c, h)
explicitly for each level (l = 1, 2, 3, ...). We know that these points are all reducible so
we can find a subset for each l, say g

l

where g
l

2 M l(c, h) at that level l for c < 1 such
that eigenvalues of M l(c, h) as expected are negative. According to authors of Ref. [9],
this subset and all other similar subsets associated at all the other levels l can be all
combined (i.e: taking the unions of the sets, g

l

) and remove from these sets from the
region R := {(c, h)|0 < c < 1, h > 0} leaving only sets of points given by eq. (115), i.e:

c = 1� 6

m(m+ 1)
and h

r,s

(m) =
[(m+ 1)r �ms]2 � 1

4m(m+ 1)
, (116)

for 1  r < m and 1  s < r. Hence the points in (116) that obey this condition are
unitary in the forbidden region. These points are also referred to as first intersections
and essentially all the points of the intersecting vanishing curves at the same level would
be defined by (116). This completes the so-called nonunitarity proof.

4.5 Minimal models

The major success of two dimensional CFT at criticality is mostly due to the Kac de-
terminant leading to conditions in eq.(116) which represents the set of minimal models
(minimal because we have employed the algebra of local fields in deriving the former). In
general minimal models reproduce exactly the scaling limit at criticality of lattice models
in statistical physics systems. From [2] and [8], the critical exponent of the Ising model
and the tricritical Ising model are described by the first series of minimal models, M(4, 3)
and M(5, 4) along with the other models [1, 8]. We shall however concentrate on the
former as they are central for the following chapter.

4.5.1 The Ising model and M(4, 3)

The Ising model is characterized by its spin observable �
i

and its energy density "
i

which
are two local scaling operators at lattice sites i. The Ising model on a 2 dimensional
lattice is therefore defined by the Hamiltonian

H = J
X
hi,ji

�
i

�
j

+B
X
i

�
i

, (117)

where J is a coupling constant, hi, ji represents sum over nearest neighboring sites and
B is the external magnetic field which is set to zero for in our case. The shift from the
ordered phase

P
i

�
i

6= 0 to a disordered phase
P

i

�
i

6= 0 characterizes a phase transition
of second order described by the scaling. This phenomenon was studied using quantum
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theoretical methods in [31]. The critical exponents, ⌘ and ⌫ are defined from the behavior
of the 2-point correlators,

h�
i

�
j

i ⇠ 1

(x
ij

)d�2+⌘

, h"
i

"
j

i ⇠ 1

(x
ij

)4�2/⌫
, (118)

where d = 2 is the number of dimensions of lattice and x
ij

is the separation between
two lattice sites i and j. Exact result initially derived by Onsager and Kau↵mann sets
⌘ = 1/4 and ⌫ = 1.

We now make use of eq. (116) for m = 3 to evaluate the conformal dimensions and
assume that both �

i

and "
j

are spinless. This leads c = 1/2 and h1,2 = h̄1,2 = 1/16 and
h2,1 = h̄2,1 = 1/4. Under the operator-field correspondence [25] we relate the operators
in (118) to their respective fields as

� () �1,2 and "() �2,1, (119)

such that the two-point correlators corresponding to M(4, 3) theory read29

h�1,2(zi, z̄i)�1,2(zj, z̄j)i =
1

|z
ij

|2(h1,2+h̄1,2)
=

1

|z
ij

|1/4 , (120)

h�2,1(zi, z̄i)�2,1(zj, z̄j)i =
1

|z
ij

|2(h2,1+h̄2,1)
=

1

|z
ij

|1 . (121)

Hence the same information as for the Ising model is obtained from calculations involving
algebra of local field. It can be noted that the data above also matches with what was
initially derived as an exercise in eq. (107) in the operator sector for the 4-point function.
The 2-point function is actually a limit of the 4-point function. We also have �1,1 leading
to h1,1 = h̄1,1 = 0, This is associated to the identity field I which is related to the stress-
energy tensor as T (z) = I�2 and its 2-point is known and is directly proportional to the
central charge. This is further discussed in Ref. [1] (Ch. 18).

4.5.2 The tricritical Ising model and M(5, 4)

The next in the minimal model series is the tricritical Ising model occurring at m = 4
and has c = 7/10 and is described by the following Hamiltonian30

H = �J
X
hi,ji

t
i

t
j

(K + �
�i,�j

) + µ
X
i

t
i

� B
X
i

�
i

, (122)

where t
i

represents the possible vacancies in the lattice sites, K now is the energy of a
pair of opposite spins while K + 1 represents the pair of like spins, µ is the chemical
potential which measures the average number of occupied sites on the lattice and finally
the last term has the exact same meaning as for eq. (117) [1]. The di↵erence with the
Ising model is that unoccupied sites are allowed number of spins on the lattice are al-
lowed to fluctuate. The tricritical Ising has five scaling operators (three energy-like and
2 spin-like). At a given value of (�, K, µ) where � = 1/T and T being the temperature, a
critical point prevails where three phases coexists (hence the terms tricritical). From an
examination of the Hamiltonian, one can infer that t

i

as bosonic contributions and that

29We have combined the holomorphic and antiholomorphic sectors using the fact that the distances
must be same between zi and zj and between z̄i and z̄j such that |zij | = |z̄ij |.

30Also known as the Blume-Emery-Gri�ths model [32].
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�
i

as fermionic contributions. At tricritical point, these two contributions are brought
into equilibrium which is seen as spacetime supersymmetry present a minimal theory.
This was probed in Ref. [28] in the context of topological superconductors31.

This suggest that the tricritical Ising model require a more general action than just
S =

R
d2z  @

z̄

 + c.c; a model that includes supersymmetry is required. The tricritical
Ising model is best described in the framework of supersymmetric conformal field the-
ories which can be consulted in Ref. [6, 15, 22]. The operators in the minimal model
M(5, 4) which describes the tricritical Ising model will eventually transform under a su-
persymmetric generalization of the conformal transformations and the algebra of fields
and superfields close under the super Virasoro algebra (also known as the Neveu-Scharz
and Ramond algebra [15]).

5 The Landau-Ginzburg theory

The Landau-Ginzburg theory is a di↵erent way of studying minimal models. A major
section of this work concentrated on understanding the duality between statistical model
at criticality and minimal theories with physical relevance identified as representations of
the Virasoro algebra. However as noted in the various (introductory) prescriptions of the
representation theory of V, one can easily loose track of the underlying physics because of
non-Lagrangian description of the models. Fortunately a class of minimal theories (which
resemble the set we derived in eq. (116) except that m is now just a bit more constraint
as shown below) known as the diagonal unitary minimal models, M(m+1,m) does exist
and are parametrized by

c
m

= 1� 6

m(m+ 1)
m = 2, 3, 4, ... (123)

h
r,s

=
[(m+ 1)r �ms]2 � 1

4m(m+ 1)
1  r  m� 1, 1  s  m, (124)

where r and s are defined similarly as for eq. (116). The primary fields of the theory
are constructed from the left and right Virasoro representations (i. e: representations of
V� V̄). The product of fields is then �

r,s

(z, z̄) = �
r,s

(z)⌦ �
r,s

(z̄) quoted from [1]. The
simple e↵ective Lagrangian description of this set of minimal model is

L =

Z
d2z


1

2
(@�)2 + V (�)

�
, (125)

where � is a self-interacting field and corresponds to the order parameter of the statistical
system. The potential V (�) is usually a power-like potential invariant under the symme-
try �! �� whose maximum values relate to several critical points of the system. This
was initially discussed by A. B. Zamolodchikov [36] and the Lagrangian (125) is known as
the e↵ective Landau-Ginzburg Lagrangian. The most critical point of the system under
consideration therefore is represented by the monomial

V (�) = �2(m�1). (126)

Hence each m� 1 minima is separated by m� 2 maxima.

31A topological superconductor is characterized by gapped modes on the bulk and gapless modes on
boundary protected by Z2 symmetry. This is explain further in section (6).

32



The important point that we understand from the Landau-Ginzburg theory is that
the diagonal unitary models M(m + 1,m) describing a multicritical point system can
be represented in terms of a single scalar field. Hence only the information about a
single scalar field is needed in the correlation functions which are then much easier to
construct. This is just one of the few reasons why the latter is a slightly better method for
describing minimal theories within the context of condensed matter systems, compared to
the Coulomb gas method for example, where merits of the CFTs are more transparent.
It can be shown that M(m + 1,m) are indeed described by the e↵ective multicritical
Landau-Ginzburg theory using fusion rules. The details of the latter techniques including
are discussed to greater lengths in Ref.[1] (Ch. 8). Figures (2) and (3) [37] illustrates the
Landau-Ginzburg description of the universality classes at m = 3 and 4 respectively as
shown below

Figure 2: The Landau-Ginzburg potential V (�) for the Ising model: (a) at criticality (b)
when temperature T is large (T >> T

c

) (c) at low tempatures T ⇠ T
c

.

Figure 3: The Landau-Ginzburg potential V (�) for the tricritical Ising model: (a) at
tricritrical point (b) when T is large (c) when T is small such that essential subleading
non-positive perturbations prevails. Images from Ref. [37].

These figures provides a more convenient description of the theory in (125) which can
be easily bridged to concepts in statistical mechanics. Aside to providing such physical
depiction of the minimal theories, the Landau-Ginzburg theory also allows one to perform
perturbation of the CFTs away from critical points which can be associated to RG flows
between di↵erent fixed point of di↵erent theories. Such flow is represented by substituting
the potential V

m

by V
m

+ ↵V
m�1 where the regime when ↵ ! 0 corresponds to the

(m+1,m) fixed point and ↵ ! 1 is associated with the fixed point (m,m�1). However
at criticality, as demonstrated in the earlier sections, behavior of the primary fields are
best described using correlation functions and studying the divergence of the latter based
on bootstrap methods provides greater insight from a mathematical point of view.
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6 Emergence of supersymmetry at critical fixed point

In this chapter, we provide a brief account of the applications of conformal invariance
to condensed matter systems motivated by the recent claims presented in Ref. [28, 35]
that spacetime supersymmetry emerges in d = 1 + 1 in such systems. Supersymmetry
is motivated by the numerous issues plaguing the standard model such as the hierarchy
problem, the cosmological constant (⇤) problem and fine tuning of the standard model
and some more issues. The systems under considerations are topological superconductors
(TSCs) where fermions (a Fermi sea of electrons or helium-3) pair up in an unusual way.
This results in states where fermions in the bulk possess an energy gap32 however modes
on the boundary (or surface)33 are gapless. This suggests that a spontaneous quantum
breaking of symmetry at (topological) phase transition will lead to gap modes. In doing
so, spacetime supersymmetry at the critical point is found to emerge up to numerical
accuracy in Ref. [28]. The gapless modes in the surface are protected by time reversal
symmetry as indicated in Ref. [34, 35]. This result provide much insight between band
structure and spacetime supersymmetry at criticality.

6.1 d = 1 + 1, N = 1 emergent supersymmetry at boundary of
TSC

In general terms, the system in consideration is the (1+1)-dimensional boundary of a
time-reversal invariant (2+1)-dimensional topological superconductor [28, 34]. Before
going into the details, we provide some explanation concerning the terminology. For ex-
ample; A topological superconductor is a two or three dimensional entity with gapless
modes on its boundary and gapped modes in the bulk. These kind of structures gained
more attention after the discovery of the discrete Z2 symmetry associated with topol-
ogy of superconductors and insulators, where Z2 := {1,�1}. One can refer to [34] for
an in-depth review of the subject. This Z2 symmetry is what is termed at time reversal
symmetry and transitions between one state (ordered)to the other (disordered) is referred
to as a phase transition. This phase transition can occur in two and three dimensions and
supports gapless Majorana modes which can be made to acquire a finite amount of energy
(gapped mode) via spontaneous symmetry breaking of Z2 symmetry at the surface due to
magnetization. In trying to understand the behavior and evolution of boundary modes
under magnetization, one realizes the central charge of the tricritical Ising model emerges
[28] and the latter is the only minimal theory endowed with supersymmetry [1, 2, 8, 15].

The model Hamiltonian which fits the above observation is [28],

H = �i
X
i

[1� gµz

i+1/2]�i

�
i+1 +H

b

, (127)

where µz

i+1/2 are the Ising spins sitting at the lattice sites i and H
b

represents the in-
teraction between the Ising spins on i and the magnetization h. �

i

represents a single

32A gapped mode is one where a finite amount of energy is required for excitation while a gapless mode
is one where its energy tends to zero as momentum tends to zero such only an infinitesimal amount of
energy is required for excitation. The latter is associated to criticality at phase transition. An example
is the Goldstone mode which is a gapless excitation arising as a result of spontaneous symmetry breaking
[24]. Hence for this reason the modes present in our case will be analogous to the Goldstino modes at
the supersymmetric critical point.

33When d = 2 the bulk is surrounded by a one-dimensional boundary. When d = 3 the bulk is
surrounded by a two-dimensional surface. Such distinction is crucial in studying this topic.
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Majorana fermion at lattice site i with spin 1/2. Majorana modes on boundary are gap-
less due translation invariance. At low energies the system describe by eq. (123) bears
the following general action formulation

S(d+1) =

Z
d⌧ddx


1

2
�̄/@�+

1

2
(@

⌧

�)2 +
⌫2
�

2
(r�)2 + r

2
�2 + g���̄+ u�4

�
, (128)

where d = 1 in the present case, � represents the Majorana field (i.e: the Ising fermionic
degree of freedom), � represents the Ising field (i.e: the Ising bosonic degree of freedom)
and the usual Dirac and Pauli matrices were used similarly to the ones in section (2.3).
When h is large, the Ising spins are disordered and when h is small, the Ising spins are
ordered leading to gapped Majorana modes34. As described in Ref. [28] for a particular
value of h, criticality is reached which is denoted by h

c

separating the gapless (h > h
c

)
and the gapped mode (h < h

c

) of the Majorana fermions, the value of the central charge
obtained is c = 7/10 as theoretically indicated in Ref. [8, 15]. This is the central charge
associated to the M(5, 4) minimal theory which describes the tricritical Ising model.

However an interesting issue that can be immediately identified in the above model
is the fact that the mass term r2�2/2 of the model is not zero at criticality and still the
minimal theory M(5, 4) prevails when h = h

c

. This is because we know from earlier
discussions that mass terms break conformal invariance and hence the former have to be
absent at criticality if an accurate description of the statistical system is to be achieved.
This is a problem which can be further studied through more formal treatments. Ex-
tending the above model to d = 2 + 1 presents some further issues which is the fact
that the theory is a low energy theory and it is not trivial to understand how spacetime
supersymmetry is realized in such framework. It can be noted that if ⌫2

�

= 1, m2 = r/2
and u = �, one ends up with the Gross-Neveu (-Yukawa) model as described in Ref. [27]
(Pg. 16, Eq. 4.4 and Eq. 4.5). One can then ask what would then be the fixed points of
the Gross-Neveu (-Yukawa) model but the latter is describing a 3D CFT - which makes
analytical evaluation of such data with precision a highly non-trivial task. (Some results
were derived computationally in Ref. [28] (App. B and App. C) using Wilsonian RG
techniques).

34The similarity with statistical mechanical critical phenomena in ferromagnetism can be noted [1].
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7 Conclusions and outlook

In this thesis, we were primarily interested in understanding the general structure of con-
formal theories and representation theory of the infinite dimensional Virasoro algebra in
two dimensions and how statistical systems are reproduced from such representations. A
concise study of these concepts has allowed us to construct the minimal models and cal-
culate the critical exponents for the universality class of the two-dimensional Ising model
and discuss that of the tricritical Ising model in chapter 4. The techniques discussed are
all very well known and well established in the vast array of literature on conformal field
theory and related topics. From chapter 2 to 5 an e↵ort was made to be as original as
possible in the discussions without straying to far within the rich mathematical details
developed other the years especially in the area of representation theory. In the final
section of this work, we very briefly consider the claims presented in the paper by Grover
et al. in Ref. [28]. The latter as it can be noted is not as intellectually gratifying as
one would want it to since the topic of emergent supersymmetry is a relatively new one.
However some recent frameworks was proposed by L. Iliesiu et al. in Ref. [27] which
involve the bootstrap method for fermions in d = 3 which seems to be a rather promis-
ing approach based on the stronger bounds derived from numerical results presented in
[27](Pg. 20).

A detailed discussion of this work goes beyond the scope of this thesis subject and
is not possible due to time constraints. It seems to be worth to further analyzed the
model in eq. (128) [28] using the three dimensional fermion bootstrap and deriving the
critical exponents with much greater exactitude. This shall be the subject of further
research; to try an understand the conjecture of spacetime supersymmetry emerging in
d = 1 + 1 at the boundary of a topological superconductor and also explore cases when
d > 2. We hope to have provided just a concise discussion to the area of conformal
field theory and its potential application to the study of emergent supersymmetry. The
latter is a recent topic and a very interesting application of conformal symmetry at phase
transition with signatures strong enough (at least in the two-dimensional case as discussed
in [28, 32, 37]) that the subject is worth studying and theoretical frameworks proposed
to study the subject in greater details are equally crucial.
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